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Abstract. Plotkin’s style of Structural Operational Semantics (SOS)
has become a de facto standard in giving operational semantics to for-
malisms and process calculi. In many such formalisms and calculi, the
concepts of names, variables and binders are essential ingredients. In
this paper, we propose a formal framework for dealing with names in
SOS. The framework is based on the Nominal Logic of Gabbay and Pitts
and hence is called Nominal SOS. We define nominal bisimilarity, an
adaptation of the notion of bisimilarity that is aware of binding. We pro-
vide evidence of the expressiveness of the framework by formulating the
early π-calculus and Abramsky’s lazy λ-calculus within Nominal SOS.
For both calculi we establish the operational correspondence with the
original calculi. Moreover, in the context of the π-calculus, we prove that
nominal bisimilarity coincides with Sangiorgi’s open bisimilarity and in
the context of the λ-calculus we prove that nominal bisimilarity coincides
with Abramsky’s applicative bisimilarity.

1 Introduction

The development of a formal semantics for programming and specification lan-
guages is a necessary first step towards rigorous reasoning about them. For
instance, a formal semantics allows one to prove the correctness of language
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implementations, and is a prerequisite for proving the validity of program opti-
mizations. Operational semantics is a widely-used methodology to define formal
semantics for computer languages, which represents the execution of programs
as step-by-step development of an abstract machine. Structural Operational Se-
mantics (SOS) was introduced by Gordon Plotkin in [42], reprinted in [21], as
a logical and structural approach to defining operational semantics. The logical
structure of SOS specifications supports a variety of reasoning principles that
can be used to prove properties of programs whose semantics is given using
SOS. Moreover, SOS language specifications can be used for rapid prototyping
of language designs and to provide experimental implementations of computer
languages.

Thanks to its intuitive appeal and flexibility, SOS has become the de facto
standard for defining operational semantics, and a wealth of programming and
executable specification languages have been given formal semantics using it. In
recent years much work on the underlying theory as well as on the practice of
SOS has been carried out—see, e.g., [3, 38] and [10, 24, 37], respectively. However,
a substantial amount of work remains to be done in this rapidly-evolving area
of research. This paper will focus on one of the crucial aspects in the definition
of semantic models for programming and specification languages that has so far
received relatively little attention in the literature of the meta-theory of SOS,
i.e., the treatment of concepts such as variables, names and binders.

Many programming and specification languages make use of the concepts of
names and binders. For example, in the π-calculus [35, 36, 48], names are first-
class objects and the whole language is built on the idea that concurrent agents
communicate by exchanging names. Binders are syntactic constructs that are
used to scope the use of names in expressions. Examples of binders are input-
prefixing operators, recursion combinators, restriction operators, infinite-sum
operators and the time-integration operator [5, 34, 22, 48].

In this paper we propose a formal framework for the handling of names in
SOS, called Nominal SOS, which is based on the nominal techniques of Gabbay,
Pitts, and Urban [16, 53].

In the semantics of most nominal calculi some basic notions such as α-
conversion and substitution are used. We show that these notions can be natu-
rally captured in the Nominal SOS framework. Moreover, we specify two of the
most prominent examples of nominal calculi, namely the lazy λ-calculus and the
early π-calculus, in Nominal SOS and show that our specifications coincide op-
erationally with the original definitions of [2] and [48], respectively. Finally, we
define a notion of nominal bisimilarity naturally arising from our framework. We
show that in the case of the π-calculus our notion coincides with the well-known
open bisimilarity, [48, 47]. On the other hand, we prove that nominal bisimilarity
is not a satisfactory notion of equivalence over the lazy λ-calculus. However, one
of the most interesting notions of bisimilarity in the context of the λ-calculus is
the applicative bisimilarity due to Samson Abramsky, [2]. We define this notion
of equivalence in the framework of Nominal SOS and prove that coincides with
its original counter-part. We finally give an alternative formulation of the lazy
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λ-calculus and we prove that in the context of this formulation, nominal and
applicative bisimilarity coincide.

The reader must bear in mind that this paper should be considered as con-
taining the basic developments of the framework of Nominal SOS, accompanied
by some examples of its application. Refinements and extensions of the frame-
work are possible and left as future work. The investigation of the theory of
Nominal SOS is also part of our future research plans. The reader may find in
Section 9 an outline of our plans for future research. The overarching aim is to
develop the framework of Nominal SOS in a way that is comparable to that of
the standard theory of SOS, as surveyed in, e.g., [3, 38], and to hopefully estab-
lish Nominal SOS as a framework of reference for the study and the development
of the theory of languages with first-class notions of names and binders.

Nominal SOS is not the only approach studied so far in the literature that
aims at a uniform treatment of binders and names in the operational semantics of
programming and specification languages. We are aware of a number of existing
approaches that accommodate variables and binders inside variations on the SOS
framework, and we discuss the most relevant approaches in Section 8.
Structure of the paper. The rest of this paper is organized as follows. In
Section 2 we define nominal terms as used in the rest of the paper. In Section 3
we define Nominal SOS, an SOS framework extended with names and binders.
We show in Section 4 how α-conversion and different types of substitutions
can be accommodated in the Nominal SOS framework. In Section 5, we give
the definitions of the λ- and the π-calculus in our framework and show their
correspondence with the original presentations. In Section 6, we define the notion
of nominal bisimilarity and show that coincides with open bisimilarity over the
early π-calculus. In Section 7, we formulate the notion of applicative bisimilarity
in the framework of Nominal SOS and show that it coincides with the original
notion of Abramsky. Section 8 discusses related works in some detail and Section
9 concludes the paper by pointing out some directions for future work. For the
sake of readability, proofs of some results and some technical definitions are
collected in a series of sections that follow Section 9.

2 Nominal terms

The following definitions of sorts and nominal signature are familiar from [53].

Definition 1 (Sorts) We assume a set of atom sorts and a disjoint set of base
sorts (or sorts of data). Sorts are defined by the following grammar:

σ ::= 1 | δ | A | [A]σ | σ × σ,

where 1 is the unit sort, δ is a base sort, A is an atom sort, and × denotes
pairing.

In the above-given grammar [A]σ denotes an abstraction sort. Intuitively, [A]σ
is a sort whose elements are functions from objects of sort A to objects of sort
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σ. As is standard, pair sorts will associate to the left, so that σ1×σ2×σ3 stands
for (σ1 × σ2)× σ3.

Definition 2 (Nominal Signature) A nominal signature (or simply signa-
ture) Σ is a triple (∆,A, F ), where

1. ∆ is a set of base sorts ranged over by δ,
2. A is a set of atom sorts ranged over by A, and
3. F is a set of operators f(σ1×...×σn)→δ, denoting a function symbol f with

arity (σ1 × . . .× σn)→ δ, where n ≥ 0.

By way of example, a function symbol of arity (σ1×σ2×σ3)→ δ can be applied
to three arguments of sorts σ1, σ2 and σ3, respectively, and the term resulting
from this application is of sort δ.

For each atom sort A, we fix a countably infinite set of atoms aA, bA, cA, dA,
nA, mA and, for each sort σ, we assume a countably infinite set Vσ of variable
symbols xσ, yσ, zσ. All the above sets are pairwise disjoint.

We will mostly write just f , a, b, c, d, n,m, and x, y, z, leaving arities and
sorts implicit (but still present).

Definition 3 (Nominal Terms) Given a signature Σ = (∆,A, F ), the set of
nominal terms over the signature Σ is denoted by T(Σ) and it is defined as
follows, where we write tσ for a term t of sort σ:

t, u ::= 〈〉1 | xσ | aA | ([aA]tσ)[A]σ | (f(σ1×...×σn)→δ(tσ1
, . . . , tσn))δ | 〈tσ, uσ′〉〈σ,σ′〉,

where A ∈ A, aA ∈ A, xσ ∈ Vσ and f is a function symbol in F with arity
(σ1 × . . .× σn)→ δ, with δ ∈ ∆.

When Σ is understood or irrelevant, we may write just T in lieu of T(Σ). The
subscripts of nominal terms control sorting and we omit them when they are
clear from the context or immaterial. We call [a]t an abstraction (of a in t).

By way of examplpe, we give below a possible nominal signature for λ-terms,
which is based on [41, Example 3].

Example 1. The nominal syntax of the λ-calculus is constructed using a base
sort L for λ-terms, an atom sort A and the following function symbols.

– var : A→ L: A unary function symbol for creating terms from atoms;
– λ( ) : [A]L→ L: A unary function symbol for embedding abstractions inside

terms;
– app : (L× L)→ L: A binary function symbol for application.

The correspondence between nominal λ-terms and those of the λ-calculus is
straightforward, and will be formalized later in the paper. For example, the
nominal term

app(λ([a](app(var(a), var(a)))), λ([a](app(var(a), var(a)))))
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represents the λ-term

λa.(a a) λa.(a a).

In what follows, for the sake of readability and to keep the notation for terms
close to that of the λ-calculus, we apply an implicit coercion and write a in lieu
of var(a) when atoms are used in positions where an expression of sort term is
expected. Moreover, we will simply write (M N) for app(M,N).

We now clarify the role of atoms and variables in Nominal SOS. As in the
ordinary theory of SOS, we treat variables x, y, z, . . ., as meta-variables, see [3]
and [38], that range over the terms of the language, according to their sort.

On the other hand, atoms are named elements that a user can employ in
programs. We call them atoms for historical reasons and, as stated in [53] with
efficacy,

[. . . ] partly to indicate that the internal structure of such names is irrele-
vant to us: all we care about is their identity (i.e. whether or not one atom
is the same as another) and that the supply of atoms is inexhaustible.

These named elements may serve various purposes. The most typical and also
prominent example of usage of atoms is that, like formal parameters in proce-
dures or function definitions, they represent placeholders for terms yet to come,
in a parameter passing fashion. This is the case, for instance, in the λ-calculus [6],
where atoms are employed in order to model the variables of the object language
that is being formalized.

The following definitions will be useful in the remainder of the paper.

Definition 4 Let t be a nominal term.

– V(t) denotes the set of variables that occur in t. For example, V(λ([a]x)) =
{x}.

– A(t) stands for the set of atoms that occur in t. For example, A(λ([a](a b))) =
{a, b}.

– ba(t) is the set of atoms a for which there exists a subterm [a]t′ in t, i.e., the
set of abstracted atoms in t. For example, ba(λ([a](a b))) = {a}.

– fa(t) is the set of atoms a in A(t) that have an occurrence in t that is not
within the scope of an abstraction [a]t′, for some term t′. We call fa(t) the
set of free atoms of t. For example, fa(λ([a](a b))) = {b} and fa(λ([a]a) a) =
{a}.

– We say that an atom a is fresh in t whenever a 6∈ fa(t). We also say that a
term t is binding-closed1 if fa(t) = ∅, i.e., the term t does not contain free
atoms.

1 Binding-closed terms corresponds to those that in literature are usually called closed.
For instance, in the context of the λ-calculus, the λ-term λa.λb.(a b) is closed, as it
does not contain free variables, see [2, 6]. We adopt a different terminology in order
to avoid confusion with the standard concept of closed term in the setting of SOS,
i.e., a term that contains no variables.
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These sets will play a role in some proofs to follow. Their formal definitions are
thus provided in Appendix A for reference purposes.

We say that a nominal term is closed if it contains no variables. It is called open
otherwise. For example, a and [a]f(b) are closed terms, but x and [a]y are open
terms. Note that neither a nor [a]f(b) is binding-closed.

The set of closed terms in T(Σ) is denoted by C(Σ) and, again, we may write
just C when Σ is understood or irrelevant. The sets of binding-closed terms in
T(Σ) and those in C(Σ) are denoted by T(Σ)0 and C(Σ)0, respectively2. A
substitution ρ over the signature Σ is a function of type V → T(Σ)3. We assume
that substitutions are sort-respecting, i.e., that ρ(x) and x have the same sort for
each x ∈ V . We extend the domain of substitutions to terms homomorphically
and write tρ for the result of applying the substitution ρ to the term t. Note,
that this notion of substitution is a simple operation of textual replacement
and that atoms may be captured after substitution. For example, if t = λ([a]x)
and ρ(x) = var(a) then tρ = λ([a]var(a)). See, for instance, the introduction
of [53] for a discussion of the differences between textual substitution and the
capture-avoiding one we will define in what follows.

If the range of a substitution is included in C(Σ), we say that it is a closed
substitution. That substitutions respect the sort of variables is a necessary re-
quirement in the framework of Nominal SOS. Consider for instance the atom
sort A, a base sort L and a binary function symbol f of arity (A×A)→ L, i.e.,
the operator f accepts two atoms as arguments. A sort-respecting substitution ρ
guarantees that in the term f(x, y)ρ, the variables x and y are mapped to atoms
in A as expected, and not to some other type of terms.

3 Nominal SOS

In languages with atoms and binding operators, the proper handling of key
notions such as capture-avoiding substitutions and renaming of bound atoms
requires a careful treatment of free atoms. For example, in the λ-calculus one
can substitute a term N for an atom b in the expression λa. b only when a is fresh
(that is, is not free) in N . A first-class treatment of atom freshness is therefore an
important ingredient in a nominal framework for defining operational semantics
for calculi with binders—see, e.g., nominal rewriting as presented in [12].

Suppose that a is an atom and t is a term of some sort. We call a formula a#t
a freshness assertion; intuitively, it states that the atom a is fresh in t. In what
follows we give a proof system for deriving freshness assertions. However, before
embarking on the formal definition, we clarify the notion of freshness by means
of the following examples, which use the nominal syntax for λ-terms defined in
Example 1.

2 The notation adopted for the set of binding-closed terms follows standard practice.
For instance the set of λ-terms is typically denoted by Λ and the set of closed λ-terms
is typically denoted by Λ0, see, for instance, [2, 6].

3 We use the symbol ρ for substitutions in place of the standard symbol σ in order to
avoid the confusion that would otherwise arise with sorts.
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– The atom a is fresh in λ([b]c), as it does not appear in it. Thus the assertion
a#λ([b]c) should be derivable.

– The atom a is not fresh in λ([b]a), as it appears free in that term. Thus, the
assertion a#λ([b]a) should not be derivable.

– The atom a is fresh in λ([b]λ([a]c)). In fact, the actual bound name in the
abstraction [a]c is considered immaterial and so it is hidden to an external
observer. Thus, the assertion a#λ([b]λ([a]c)) should be derivable, and so
should b#λ([b]λ([a]c)).

We now proceed to formalize the derivation of freshness assertions by suitably
adapting the rules in [53, Figure 2].

Definition 5 (Freshness derivation rules) Let Σ be a nominal signature,
and let the atom a and the term t be over the signature Σ. We write ` a#t
when a#t may be derived using the following rules, where a and b are distinct
atoms.

a#〈〉 a#b

a#t1, . . . , a#tn

a#f(t1, . . . , tn) a#[a]t

a#t

a#[b]t

a#t1, a#t2

a#〈t1, t2〉

As a matter of notation, we often simply write a#t for ` a#t. The following
theorem, which can be shown using a routine inductive argument, states the
correctness of the proof system for freshness assertions given above with respect
to the definition of freshness given in Definition 4.

Theorem 1 (Correctness of Freshness Derivations). Let Σ be a nominal
signature and let the atom a and the term t be over the signature Σ. Then a is
fresh in t if, and only if, a#t.

We are now ready to define the notion of nominal transition system specifi-
cation whose rules employ the freshness assertions defined above.

Definition 6 (Transition relations and formulae) Let R be a set of tran-
sition relation symbols. To each r ∈ R we associate a transition relation arity,
which is a sort of the form σ × σl × σ′. We call σ the ‘sort of the source of the
transition’, σ′ the ‘sort of the target of the transition’, and σl the ‘sort of the
label of the transition’.

For a relation r ∈ R with arity σ × σl × σ′, a positive transition formula is

written t
l→r t

′, where t is a possibly open term of sort σ (we call it the source
term), l is a possibly open term of sort σl (we call it the label), and t′ is a
possibly open term of sort σ′ (we call it the target term).

For the same relation r, we write t
l9r for a negative transition formula,

where t is of sort σ and l is of sort σl.
A transition formula is a positive or negative transition formula.

For a relation r ∈ R with arity σ × σl × σ′, if σl is the unit sort 1 then we say
that r has no label. If σ′ is the unit sort, then r is a predicate symbol. We may
silently drop σl (and σ′) if they are the unit sort.
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Definition 7 (Derivation rule) A derivation rule is of the form

{ti
li→ri t

′
i | i ∈ I} ∪ {tj

lj9rj | j ∈ J} ∪ {ak#tk | k ∈ K}

t
l→r t

′

where

– I, J and K are indexing sets,

– {ti
li→ri t

′
i | i ∈ I} is a set of positive transition formulae, called the positive

premises of the rule,

– {tj
lj9rj | j ∈ J} is a set of negative transition formulae, called the negative

premises of the rule,
– {ak#tk | k ∈ K} is a set of freshness assertions, called the freshness premises

of the rule, and

– t
l→r t

′ is a positive transition formula, which we call the conclusion of the
rule.

We call t, l, and t′ the source, the label and the target of the rule, respectively.
We call a derivation rule an axiom if I, J and K are empty. A derivation

rule is positive when the index set J is empty.

Substitutions are also extended to formulae, sets of formulae and rules in the
expected way. For a derivation rule d and a substitution ρ, the rule dρ is called
a substitution instance of d.

Definition 8 (Nominal Transition System Specification) A nominal tran-
sition system specification ( NTSS) is a triple (Σ,R,D) consisting of:

1. A nominal signature Σ;
2. A set of (transition) relation symbols R; and
3. A set of derivation rules D.

An NTSS is positive when all its deduction rules are positive. Positive NTSS’s
are much easier to deal with than general ones and come with a natural notion
of semantics, i.e., the set of provable transitions.

Given closed terms t and t′, and a label l, the intended reading of t
l→r t

′ is:

t can make an r-transition with label l to t′. We write t
l9r to mean that there

is no term t′ such that t
l→r t

′. A positive NTSS gives these intuitions formal
meaning using a notion of ‘derivable transition’, which we now define.

Definition 9 Let T be an NTSS. The derivable transitions of T are inductively
defined as follows. Suppose that

{ti
li→ri t

′
i | i ∈ I} ∪ {ak#tk | k ∈ K}

t
l→r t

′

is a rule in T , and suppose ρ is a closed substitution over the signature of T . If
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– tiρ
liρ→ri t

′
iρ is derivable, for every i ∈ I, and

– ak#tkρ is derivable (using the rules in Definition 5), for every k ∈ K,

then tρ
lρ→r t

′ρ is derivable.

This means that the set of derivable transitions is the least collection of
transitions that is ’closed under the application of the rules.’

3.1 Semantics of NTSSs

All the NTSSs we consider in this paper are positive, and Definition 9 suffices
to give their semantics.

To give a semantics to NTSSs in general, one has to define a meaning for
negative transitions, i.e., when a negative transition is ’provable’. This has been
a source of complications in the theory of SOS and several proposals for such a
notion exist [54]. The most widely accepted notion of semantics for transition
system specifications involving negative transitions is that of least three-valued
stable model. To define this concept, we need two auxiliary definitions, namely
provable transition rules and consistency, which are given below.

Definition 10 (Provable transition rules) A closed deduction rule is called
a transition rule when it is of the form N

φ with N a set of negative formulae. An

NTSS T proves N
φ , denoted by T ` N

φ , when there is a well-founded upwardly
branching tree with closed formulae as nodes and of which

– the root is labelled by φ;
– if a node is labelled by ψ and the labels of the nodes directly above it form

the set K then:
• ψ is a negative formula and ψ ∈ N , or
• ψ is a positive formula and K

ψ is a substitution instance of a deduction
rule in T .

Definition 11 (Contradiction and consistency) The closed transition for-

mula t
l→r t

′ is said to contradict t
l9r , and vice versa. For two sets Φ and Ψ

of closed formulae, Φ contradicts Ψ when there is some φ ∈ Φ that contradicts
a ψ ∈ Ψ . We write Φ � Ψ , and say that Φ entails Ψ , when Φ does not contradict
Ψ and each positive transition formula in Ψ is contained in Φ.

Remark 1. Note that, when Ψ is a collection of negative transition formulae,
Φ � Ψ holds exactly when Φ does not contradict Ψ .

We now have all the necessary ingredients to define the semantics of NTSSs in
terms of three-valued stable models.

Definition 12 (Three-valued stable model) A pair (C,U) of disjoint sets
of positive closed transition formulae is called a three-valued stable model for
an NTSS T when the following conditions hold for each φ:
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– φ ∈ C if, and only if, there is a set N of negative formulae such that T ` N
φ

and C ∪ U � N , and
– φ ∈ C ∪ U if, and only if, there is a set N of negative formulae such that
T ` N

φ and C � N .

C stands for Certainly and U for Unknown; the third value is determined by
the formulae not in C ∪U . The least three-valued stable model is a three-valued
stable model that is the least one with respect to the ordering on pairs of sets of
formulae defined as (C,U) ≤ (C ′, U ′) iff C ⊆ C ′ and U ′ ⊆ U .

In the literature [44, 54] (in the setting without names and binders), it has
been shown that every TSS admits a least three-valued stable model with respect
to the information theoretic ordering. This result easily extends also to our
setting for NTSSs.

We say that an NTSS is complete when for its least three-valued stable

model it holds that U = ∅. If an NTSS is complete, we write p
l→r p

′ in lieu of

(p
l→r p

′) ∈ C. All the NTSSs considered in this paper are positive and therefore
complete.

4 Substitution and α-conversion

Substitution and α-equivalence play a key role in the definition of the semantics
of calculi with binders. We will now show how those notions can be accommo-
dated within the framework of Nominal SOS.

Atoms inequality First of all, notice that it is possible to employ freshness asser-
tions in order to check for inequality between two atoms. As a matter of fact, the
assertion a#b holds exactly when a and b are different atoms. In the remainder
of this paper, some rules need to check inequality of atoms. In order to increase
the readability of rules, and let the reader understand clearly the meaning be-
hind some premises, we shall write sometimes a premise a 6= t to mean a#t, with
t an atom or a variable of atom sort. The checking of atoms equality is never
employed in the remainder of this paper. As future extensions of the framework
of Nominal SOS, we are planning to allow also for negative freshness premises
and this type of premises can be used to express equality of atoms, as an atom
a is not fresh in an atom b only when a and b are the same atom.

4.1 Substitution transitions

Substitution is a natural notion required in the semantics of most nominal calculi.
The well-known notion of substitution for these calculi is subtly different from
the naive textual substitution we have used in giving semantics to NTSSs in
that it should avoid ‘capture of atoms’. For example, replacing b with a in [a]b,
if done naively, results in [a]a, which captures the free name a by the abstraction
surrounding it. Hence, a substitution is allowed only as long as the variable that
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is abstracted by the binder is fresh in the substituting term. In Nominal SOS,
we can model this freshness requirement within our framework (instead of in the
meta-language as in most other approaches, such as the one presented in [9]) by
means of freshness assertions, which are native to the nominal framework.

The substitution discussed in the previous paragraph is what we will call an
atom-for-atom substitution, since it replaces atoms with atoms. Such substitu-
tions underlie the definition of α-conversion and α-equivalence (Section 4.2) and
are used in calculi such as the π-calculus, whose formulation within the Nominal
SOS franework we will discuss in Section 5.2. The effect of applying an atom-
for-atom substitution to terms over a nominal signature is described by means
of a transition relation. For a given nominal signature, the deduction rules for
atom-for-atom substitution transitions can be generated automatically following
the procedure that we will present shortly.

Capture avoiding substitutions that replace atoms with terms are typically
employed by higher-order calculi, such as the λ-calculus, CHOCS [52] and the
Higher-order π-calculus [45], just to mention a few. The effect of applying such
substituions to terms can be axiomatized using calculus-specific deduction rules,
as we exemplify in Section 5.1 in the setting of the λ-calculus.

Atom-for-atom substitution is used in calculi such as the π-calculus [48, 36]
and its variants. In Nominal SOS the effect of applying such substitutions on
terms is described by means of the deduction rules in Figure 1. Those rules

generate transitions of the form t1
a
A7→b−→ t2 for some atoms a and b of the same

sort and terms t1 and t2. More specifically, given an atom sort A such that a and

b are of sort A, and a sort σ, the transition relation
a
A7→b−→ has sort σ× (A×A)×σ;

even though its sort is A × A, we write a
A7→ b in lieu of 〈a, b〉 for the label of a

substituion transition to emphasize the fact that such a transition describes the
effect of replacing atom a by atom b in a term.

a
a
A7→z−→ z (a1As)

a 6= x

a
x
A7→z−→ a

(a2As)
x
y
A7→z−→ x′ a 6= z a 6= y

[a]x
y
A7→z−→ [a]x′

(abs1As)

[a]x
a
A7→z−→ [a]x (abs2As)

{
xi

y
A7→z−→ x′i | 1 ≤ i ≤ n

}
f(x1, x2, . . . , xn)

y
A7→z−→ f(x′1, x

′
2, . . . , x

′
n)

(fAs)

〈〉 y
A7→z−→ 〈〉 (uAs)

x1
y
A7→z−→ x′1, x2

y
A7→z−→ x′2

〈x1, x2〉
y
A7→z−→ 〈x′1, x′2〉

(pAs)

Fig. 1. Deduction rules for atom-for-atom substitution transitions
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The sort of the variables used in the rules in Figure 1 can be inferred by their
usage. For instance, the variable z that occurs in the rule (a2As) is of atom sort.
Recall also that a premise a 6= x, where x is a variable ranging over an atom
sort, means a#x.

Lemma 1.

1. Atom-for-atom substitution transitions are sort respecting, that is, if t
a
A7→b−→ u

then t and u are terms of the same sort.

2. If t
b
A7→a−→ u and b#t then t ≡ u.

3. If t
a
A7→b−→ u and b#t then u

b
A7→a−→ t and a#u.

Proof. Statements 1 and 3 can be shown by induction on the proof of the

transition t
a
A7→b−→ u. The proof of statement 3 uses statement 2, which can be

shown by induction on the structure of t. �

It is important not to confuse the textual substitutions ρ defined in Section 2
and the one defined above. The former is on the meta-level of the semantics
of Nominal SOS and acts on variables. It is a semantic meta-operation that is
used in order to instanciate the rules of Nominal SOS and prove transitions.
Moreover, this notion allows for capture of atoms. For instance, we can apply
the axiom (abs2As) with a substitution ρ that maps x to a and z to b, for some

atoms a and b, in order to prove the transition [a]a
a
A7→b−→ [a]a.

Instead, the purpose of atom-for-atom substitutions and of the term-for-atom
substitutions we will define in Section 5.1 is replacing atoms by suitable terms,
thus modelling the fact that atoms are variables of the object language and
represent placeholders for other terms.

Recall also that the textual substitutions ρ that are employed in the definition
of the semantics of an NTSS must respect the sort of variables. This means,
for instance, that the rules above cannot be applied to prove term-for-atom
substitution transitions. For example, given a complex (non-atom) term t, the

transition a
a
A7→t−→ t is not provable using rule (a1As).

Atom-for-atom substitution transitions are deterministic.

Lemma 2 (Determinism of substitution transitions). Let T be an NTSS
containing the rules for atom-for-atom substitution as defined in Figure 1. For

all closed terms t, t′, t′′, and for all atoms a, b, it holds that if t
a
A7→b−→ t′ and

t
a
A7→b−→ t′′ then t′ = t′′.

The above lemma can be proved easily by structural induction. To see this, it
suffices only to notice that rules (a1As) and (a2As) cannot be applied simultane-
ously, and also (abs1As) and (abs2As) cannot be applied simultaneously.

The reader may be more familiar with the syntactic substitution operation,
defined below, where t and the tis are closed terms and a, b, c are atoms with a
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and b are distinct.

〈〉[b/a] = 〈〉
a[b/a] = b
a[c/b] = a

([a]t)[b/a] = [a]t
([a]t)[c/b] = [a](t[c/b]) if a 6= c

f(t1, t2, . . . , tn)[b/a] = f(t1[b/a], t2[b/a], . . . , tn[b/a])
〈t1, t2〉[b/a] = 〈t1[b/a], t2[b/a]〉

The following theorem states that the two notions (substitution transitions and
syntactic substitutions) correspond.

Theorem 2 (Correctness of Substitution Transitions). Let T be an NTSS.

Let t and t′ be closed terms, and a and b be atoms. Then t
a
A7→b−→ t′ if, and only if,

t′ = t[b/a].

We give the proof of Theorem 2 in Appendix D.

4.2 α-conversion Transitions

The notion of α-congruence is a natural equivalence relation over terms guar-
anteeing that the name chosen in binders is not important and can be indeed
replaced by any other name (while avoiding capture). Unfortunately, not all
names can be picked when performing this change. To exemplify this fact, we
can consider again the λ-calculus. The term λa.(a b) is α-equivalent to λc.(c b)
(provided that a 6= b and b 6= c). The atom c is indeed a suitable atom for
‘α-conversion’. However, the atom b is not suitable, because one does not want
to α-convert the term λa.(a b) into λb.(b b) as this leads to the capture of a free
atom. Again, thanks to freshness assertions, we can accommodate α-conversion
in our framework as an ordinary transition relation. Given a nominal signature
Σ, the following deduction rules define the relation ≈α over closed terms over
Σ. (Strictly speaking, for each sort σ, there is a relation ≈σα with sort σ×1×σ,
and these transition relations are defined using the rules below. In what follows
we omit the sort information and the label from the relation for the sake of
redability.) For all atoms a and b and function symbols f , we have the rules in
Figure 2. Note that α-conversion transitions rely on those for the atom-for-atom
substitution (see rule (abs1α)). Throughout the paper, whenever we say that
the above rules for α-conversion transitions are present in an NTSS, this implies
that also the rules for atom-for-atom substitutions are present.

Lemma 3. The transition relation ≈α is sort respecting, that is, if t1 ≈α t2 then
t1 and t2 are terms of the same sort. Moreover, ≈α is a congruence relation over
terms.

Proof. The first claim can be shown by induction on the proof of the transition
t1 ≈α t2, using Lemma 1(1) in case the last rule used in the proof is (abs1α).

13



a ≈α a (idα) 〈〉 ≈α 〈〉 (idUα)
x ≈α y y ≈α z

x ≈α z
(Transα)

x
a
A7→b−→ y b#x

[a]x ≈α [b]y
(abs1α)

x ≈α y
[a]x ≈α [a]y

(abs2α)

{xi ≈α x′i | 1 ≤ i ≤ n}
f(x1, x2, . . . , xn) ≈α f(x′1, x

′
2, . . . , x

′
n)

(fα)
x1 ≈α x′1, x2 ≈α x′2
〈x1, x2〉 ≈α 〈x′1, x′2〉

(pα)

Fig. 2. Deduction rules axiomatizing ≈α

Reflexivity of ≈α follows by induction on the structure of closed terms and
transitivity is immediate by rule (Transα).

To prove that ≈α is symmetric, one shows that if t ≈α u then u ≈α t by
induction on the proof of the transition t ≈α u. The only non-trivial case in
the proof is when t ≈α u has been shown using rule (abs1α), which is the one
asymmetric deduction rule for ≈α . In that case, we have that

– t ≡ [a]t′ for some t′,
– u ≡ [b]u′ for some u′,

– t′
a
A7→b−→ u′ and

– b#t′.

Since t′
a
A7→b−→ u′ and b#t′, Lemma 1(3) yields u′

b
A7→a−→ t′ and a#u′. Therefore,

using rule (abs1α), we may infer that u ≡ [b]u′ ≈α [a]t′ ≡ t.
The substitutivity of ≈α is an immediate consequence of rules (abs2α), (fα)

and (pα). �

Example 2. Rule (Transα) is necessary to ensure trasitivity of ≈α . To see this,
consider the terms

t = [a][c]f(a, c),

u = [b][c]f(b, c) and

v = [b][d]f(b, d).

Using rule (abs1α) one can show that t ≈α u and u ≈α v. On the other hand,
without rule (Transα), it is impossible to derive t ≈α v.

The reader will be familiar with the syntactic version of α-conversion, defined
below.

Definition 13 (α-conversion over nominal terms) Let T be an NTSS. The
relation =α is the least congruence over nominal terms over the signature of T ,
such that, for each closed term t and for each atom b, if b is fresh in t then
[a]t =α [b](t[b/a]). (Recall that ‘b is fresh in t’ means that b 6∈ fa(t).)
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The relations ≈α and =α agree, as stated in the following theorem.

Theorem 3 (Correctness of α-conversion transitions). Let T be an NTSS.
For all closed terms t and u over the signature of T , it holds that t ≈α u if, and
only if, t =α u.

Proof. Let T be an NTSS. We show that. for all closed terms t and u over the
signature of T , t ≈α u if, and only if, t =α u.

The implication from left to right can be proved by induction on the proof
of the transition t ≈α u. Since the details are not hard, we limit ourselves to
presenting the most interesting case in the proof, namely, the one when t ≈α u
has been derived using rule (abs1α). In this case, we have that

– t ≡ [a]t′ for some t′,
– u ≡ [b]u′ for some u′,

– t′
a
A7→b−→ u′ and

– b#t′.

Since t′
a
A7→b−→ u′ and b#t′, we have that u′ = t′[b/a] (Theorem 2) and b is fresh

in t′ (Theorem 1). So, by Definition 13, t ≡ [a]t′ =α [b](t′[b/a]) ≡ u and we are
done.

The implication from right to left can be shown by induction on the proof of
t =α u, using the fact that ≈α is a congruence relation by Lemma 3. In the case
that t =α u because t ≡ [a]t′ for some t′, u ≡ [b](t[b/a]) and b is fresh in t′, one
proceeds along the lines given above. �

Calculi with binders usually consider a term as a representative of the equivalence
class of all the terms that are α-convertible to it. In Nominal SOS, it is possible
to achieve this affect by augmenting a NTSS with a deduction rule, given below.

Definition 14 (Transitions up to α-equivalence) Let T be an NTSS and

l be a label over the signature of T . The transition relation
l→ is up to α-

equivalence whenever the deduction rules of T contain the rules for α-conversion
transitions, as defined above, the rules for atom-for-atom substitution transitions,
as defined in Figure 1, and the deduction rule:

x ≈α y y
l→w w ≈α z

x
l→ z

(l · upToα).

Depending on the characteristics of the calculus at hand, the modeller might
want to define some of the transition relations to be up to α-equivalence.

5 Examples

As we have seen so far, Nominal SOS is an extension of standard SOS with
atoms, binding constructs and freshness assertions. Freshness assertions may be
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used in the inference rules that define the transition relations describing the
operational semantics of terms and can be proved to hold using a proof system
that is uniformly defined from a given nominal signature. Notions like atom-
for-atom substitution and α-equivalence are part of the framework, rather than
being meta-level notions, and are defined by rules that are also automatically
generated from a given nominal signature.

To our mind, these are pleasing properties of the framework. However, a key
question to be addressed at this point is whether Nominal SOS is actually useful
in formalizing the operational semantics of nominal languages.

In this section we provide some evidence for the expressiveness, and per-
haps naturalness, of Nominal SOS by formulating in our framework two classic
nominal calculi, namely the lazy λ-calculus [2] and the early π-calculus [36, 48].
Earlier nominal formulations of the λ-calculus may be found in, e.g., [17, 41].

5.1 The lazy λ-calculus

For ease of reference, we repeat here the signature for λ-terms given in Example 1.
The signature Σλ of the lazy λ-calculus is constructed using a base sort L for
λ-terms and an atom sort A. The signature also contains the following function
symbols:

– var : A→ L: A unary function symbol for creating terms from atoms;
– λ( ) : [A]L→ L: A unary function symbol for embedding abstractions inside

terms;
– app : (L× L)→ L: A binary function symbol for application.

The operational semantics for the language is given in terms of a big-step reduc-
tion transition → , whose sort is L×1×L, here displayed with no label to remain
in line with the standard notation from [2]. Since in the λ-calculus atoms are
placeholders for terms, the NTSS for the nominal formulation of that calculus
also needs to implement term-for-atom substitutions. As we did for atom-for-
atom substitutions, we describe the effect of replacing an atom with a term in
a nominal λ-term using a transition relation, whose sort is L × (A × L) × L.
The rules that axiomatize term-for-atom substitution transitions are given in

Figure 3. Those rules generate transitions of the form M
a
T7→N−→ M ′ for some atom

a and terms M , M ′ and N . (We write a
T7→ N in lieu of 〈a,N〉 for the label of a

substituion transition to emphasize the fact that such a transition describes the
effect of replacing atom a by term N in a term.)

In the rules in Figure 3, we have used the formal definition of the signature
for nominal λ-terms. However, to ease readability and to keep the notation for
terms close to that of the λ-calculus, in the remainder of this paper we will
write simply a instead of the term var(a) for λ-calculus variables and (M N) for
app(M,N)..

The set of rules of the NTSS Tλ for the lazy λ-calculus contains the following
two deduction rules, which define the operational semantics of our version of the
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var(a)
a
T7→z−→ z (a1Ts)

a 6= x

var(a)
x
T7→z−→ var(a)

(a2Ts)

x
y
T7→z−→ x′ a#z a 6= y

[a]x
y
T7→z−→ [a]x′

(abs1Ts) [a]x
a
T7→z−→ [a]x (abs2Ts)

x
y
T7→z−→ x′

λ(x)
y
T7→z−→ λ(x′)

(λTs)
x
w
T7→z−→ x′ y

w
T7→z−→ y′

app(x, y)
w
T7→z−→ app(x′, y′)

(appTs)

Fig. 3. Deduction rules for term-for-atom substitution transitions in the λ-calculus

lazy λ-calculus, for all atoms a.

λ([a]x)→λ([a]x)
(abs)

x0→λ([a]y0) y0
a
T7→x1−→ y1 y1→ y2

(x0 x1)→ y2

(app)

The transition relation → and the term-for-atom substitution transition rela-
tions are up to α-equivalence. Notice that, by Definition 14, this means that the
set of rules of Tλ contains also the rules for α-conversion transitions and the
rules for atom-for-atom substitution transitions, which are themselves set to be
up to α-equivalence.

Definition 1. We say that a term M ∈ C(Σλ) has a normal form if M→M ′

for some M ′. In that case, M ′ is a normal form for M .

For instance, the term

Ω = λ([a](a a)) λ([a](a a))

has no normal form, but every abstraction does. In particular, λ([a]Ω) has a
normal form, unlike Ω.

Following standard notation, we denote by Λ be the set of λ-terms of [2, 6].
The encoding J·Kλ is a map from Λ into terms of our nominal λ-calculus and is
defined as follows.

JaKλ = a
Jλa.MKλ = λ([a]JMKλ)
JM NKλ = JMKλ JNKλ

We present the rules for the semantics of the original lazy λ-calculus from [2]
below4.

λa.x→λa.x
(absO)

x0→λa.y0 y0[x1/a]→ y1

(x0 x1)→ y1

(appO)

4 In [2], Abramsky uses the symbol ⇓ in lieu of → .
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The reader should not confuse the substitution operation over λ-terms em-
ployed in the rule (appO) with the syntactic substitution over nominal terms
defined in Section 4.1. We recall that λ-terms are considered up to α-equivalence;
this means that, for instance, the λ-terms λa.a and λb.b are considered syntacti-
cally equal. The notions of substitution and α-equivalence over λ-calculus terms
are standard and are therefore not provided in the main body of the paper.
However, for completeness, they are repeated in Appendix B together with some
other useful definitions.

The following theorem establishes the operational correctness of our formu-
lation of the lazy λ-calculus with respect to Abramsky’s original one.

Theorem 4 (Operational Correspondence: lazy λ-calculus).

1. For all M,N ∈ Λ, if M→N then JMKλ→ JNKλ.
2. For all M ∈ Λ and N ∈ C(Σλ), if JMKλ→N then M→N ′ for some N ′ ∈ Λ

such that JN ′Kλ = N .

We give the proof of Theorem 4 in Appendix E.

5.2 The early π-calculus

The signature Σπ of our nominal formulation of the syntax of the π-calculus con-
tains the base sorts Act and P (for action labels and processes, respectively), the
atom sort C (for channels) and the following function symbols for constructing
terms of sort P :

– 0 :→ P for inaction (deadlock),
– τ. : P → P for τ -prefix,
– out( , , ) : (C × C × P )→ P for output prefix,
– in( , ) : (C × [C]P )→ P for input prefix,
– ν( ) : [C]P → P for restriction,
– | : (P × P )→ P for parallel composition,
– + : (P × P )→ P for nondeterministic choice, and
– ! : P → P for parallel replication.

In addition, the following function symbols for building terms of sort Act are in
Σπ:

– τA :→ Act for the τ action label,
– inA : (C × C)→ Act for constructing input actions,
– outA : (C × C)→ Act for constructing output actions, and
– boutA : (C × [C]1)→ Act for constructing bound output actions.

Since our aim in this section is to provide an example of usage of Nominal SOS,
we prefer to stick with the exact definitions of the framework rather than making
the syntax closer to that of the π-calculus by providing syntactic sugar, as we did
for the lazy λ-calculus. For instance, the syntax employed for input and output
prefixes differs slightly from the standard notation used in the π-calculus. In
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particular, a term out(a, b, p) over Σπ corresponds to the process ab.p of the
π-calculus, and in(a, [b]p) corresponds to a(b).p. A term of the form ν([a]p) is
the nominal counterpart of what would be written νa.p in the π-calculus.

A similar choice is adopted for the labels. We use τA for the nominal coun-
terpart of the τ action in the π-calculus. The term inA(a, b) stands for an input
of channel b on channel a, which is denoted by ab in the π-calculus, whereas
outA(a, b) is the nominal counterpart of an output of channel b on channel a,
which is denoted by ab in the π-calculus. The term boutA(a, [b]〈〉) represents the
output of the bound channel name b on channel a, which is written a(b) in the
π-calculus. (In what follows, we will abbreviate boutA(a, [b]〈〉) to boutA(a, [b]).)

The semantics of the early π-calculus is specified in Nominal SOS by means
of the rules in Figure 4, where we use ` to range over labels (closed terms of base
sort Act), and a, b and c to range over atoms (channels). Moreover, for each label

`, the transition relation
`→ is up to α-equivalence. As in the previous case, by

Definition 14 this means that the set of rules over Σπ contains the rules for α-
conversion transitions and the rules for atom-for-atom substitution transitions.
The latter are needed both in the context of α-conversion and in the rules that
specifically define our formulation of the π-calculus; see rule (in). We set the
atom-for-atom substitution transition relations to be up to α-equivalence, too.

Note that the complicated side conditions of the ordinary formulation of
π-calculus are replaced here by simpler freshness conditions; see, for instance,
rules (parRes1) and (close1). By way of example, consider the rule of the original
π-calculus that describes the interleaving semantics of the parallel composition
operator. (The complete set of rules is given in Figure 5 later on in this section.)
That rule is

bn(`) ∩ fn(x2) = ∅
x1

`→ y1
(parO1)

x1 ||x2
`→ y1 ||x2

where bn(`) denotes the set of bound names that occur in the label ` and fn(p)
denotes the set of names that have a free occurrence in the term p; see [48] and
Appendix C for the formal definitions.

The side condition for this rule is ‘external’ to the semantic specification. In
implementations, checking whether this side condition holds is handled by a run-
time check, after a substitution is applied in order to use the rule (parO1) with
concrete terms. On the theoretical side another approach is to populate the SOS
semantics with copies of the same rule for each combination of label, substituted
for `, and closed term, substituted for x2, that satisfies the side condition. This
approach complicates the theory. As a result, proofs in the context of the π-
calculus are usually not uniform in their development, having the necessity to
switch, from time to time, from handling technicalities within the semantics of
the calculus to technicalities concerning the external level of the side conditions.

In our formulation of the π-calculus, the behaviour of the rule (parO1) is
modelled by considering two cases. In the first case we define the interleaving
semantics of the parallel composition for all the labels that do not need the
considered special checks. These are all the labels with the exception of those
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(τ)
τ.x

τA→ x

(out)

out(a, b, x)
outA(a,b)→ x

x
b
A7→c−→ y

(in)

in(a, [b]x)
inA(a,c)→ y

x1
`→ y1

(sum1)
x1 + x2

`→ y1

` 6∈ {boutA(a, [b]) | a, b ∈ C}
x1

`→ y1
(par1)

x1 ||x2
`→ y1 ||x2

x2
`→ y2

(sum2)
x1 + x2

`→ y2

` 6∈ {boutA(a, [b]) | a, b ∈ C}
x2

`→ y2
(par2)

x1 ||x2
`→x1 || y2

x1
boutA(a,[b])→ y1 b#x2

(parRes1)

x1 ||x2
boutA(a,[b])→ y1 ||x2

x2
boutA(a,[b])→ y2 b#x1

(parRes2)

x1 ||x2
boutA(a,[b])→ x1 || y2

x1
outA(a,b)→ y1 x2

inA(a,b)→ y2
(com1)

x1 ||x2
τA→ y1 || y2

x1
inA(a,b)→ y1 x2

outA(a,b)→ y2
(com2)

x1 ||x2
τA→ y1 || y2

x1
boutA(a,[b])→ y1 x2

inA(a,b)→ y2 b#x2
(close1)

x1 ||x2
τA→ ν([b](y1 || y2))

x1
inA(a,b)→ y1 x2

boutA(a,[b])→ y2 b#x1
(close2)

x1 ||x2
τA→ ν([b](y1 || y2))

x
`→ y

(repl)
!x

`→ y ||!x

x
outA(a,b)→ y1 x

inA(a,b)→ y2
(repl− com)

!x
τA→ (y1 || y2) ||!x

x
boutA(a,[b])→ y1 x

inA(a,b)→ y2 b#x
(repl− close)

!x
τA→ ν([b](y1 || y2)) ||!x

x
outA(c,a)→ y a 6= c

(open)

ν([a]x)
boutA(c,[a])→ y

c 6∈ ba(`)
x

`→ y c#`
(res)

ν([c]x)
`→ ν([c]y)

Fig. 4. Rules for the nominal formulation of the early π-calculus
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representing bound outputs and, for each such label, we have an instance of rule
(par1). In the second case, we manage the labels that require the extra checks,
namely the bound outputs. Thanks to the freshness premises, we are able to
model the checks within the framework; see rule (parRes1).

As another example, consider the following rule from the early π-calculus
(rule (resO) in Figure 5), where names(`) is the set of all channel names occurring
in the label `:

c 6∈ names(`)
x

`→ y

νc.x
`→ νc.x

The nominal counterpart of this rule is (res) in Figure 4. The side condition of
the above rule is implemented by means of a freshness premise that ensures that
the rule can only be applies when the channel name c is fresh (that is, does not
occur free) in the label `, and a side condition that states that the operational
specification only includes instances of rule (res) for those labels that do not
have c as a bound atom.

The convenient use of freshness premises in the rules for π-calculus indicates
that having freshness tests in rules is not only useful in modelling in a direct
way meta-level operations such as substitutions and α-conversion, see Section 4,
but it is also useful in the modelling of specific features of languages.

We denote by Π the set of π-calculus terms of [48], which is generated by
the following grammar:

p, q ::= 0 | τ.p | ab.p | a(b).p | νa.p | p+ q | p || q | !p.

The encoding J·Kπ is a map from Π into terms of our nominal π-calculus and is
defined as follows.

J0Kπ = 0
Jτ.pKπ = τ.JpKπ

Jab.pKπ = out(a, b, JpKπ)
Ja(b).pKπ = in(a, [b]JpKπ)
Jνa.pKπ = ν([a]JpKπ)

Jp+ qKπ = JpKπ + JqKπ
Jp || qKπ = JpKπ ||JqKπ

J!pKπ = !JpKπ

Since we use a different notation for actions, the encoding is extended to labels
as follows.

JτKπ = τA
JabKπ = inA(a, b)
JabKπ = outA(a, b)

Ja(b)Kπ = boutA(a, [b])

For ease of reference, we repeat below the rules giving the semantics of the
original early π-calculus from [48, Table 1.5, page 38]. We recall that, in those
rules, names(`) denotes the set of names that occur in the label `, bn(`) denotes
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the set of bound names that occur in the label ` and fn(p) denotes the set of
names that have a free occurrence in the term p; see [48]. The formal definitions of
these sets are repeated in Appendix C together with some other useful definitions
from the standard theory of the π-calculus.

(τO)
τ.x

τ→x
(outO)

ab.x
ab→x

(inO)
a(b).x

ac→x[c/b]

x1
`→ y1

(sumO1)
x1 + x2

`→ y1

bn(`) ∩ fn(x2) = ∅
x1

`→ y1
(parO1)

x1 ||x2
`→ y1 ||x2

x2
`→ y2

(sumO2)
x1 + x2

`→ y2

bn(`) ∩ fn(x1) = ∅
x2

`→ y2
(parO2)

x1 ||x2
`→x1 || y2

x1
ab→ y1 x2

ab→ y2
(comO1)

x1 ||x2
τ→ y1 || y2

b 6∈ fn(x2)
x1

a(b)→ y1 x2
ab→ y2

(closeO1)
x1 ||x2

τ→ νb.(y1 || y2)

x1
ab→ y1 x2

ab→ y2
(comO2)

x1 ||x2
τ→ y1 || y2

b 6∈ fn(x1)
x1

ab→ y1 x2
a(b)→ y2

(closeO2)
x1 ||x2

τ→ νb.(y1 || y2)

x
`→ y

(replO)
!x

`→ y ||!x

x
ab→ y1 x

ab→ y2
(repl− comO)

!x
τ→ (y1 || y2) ||!x

b 6∈ fn(x)
x
a(b)→ y1 x

ab→ y2
(repl− closeO)

!x
τ→ (νb.(y1 || y2)) ||!x

a 6= z
x
za→ y

(openO)

νa.x
z(a)→ y

c 6∈ names(`)
x

`→ y
(resO)

νc.x
`→ νc.x

Fig. 5. Rules for the early π-calculus

The reader should not confuse the operation of substitution over π-terms
employed in the rule (inO) with the syntactic substitution over nominal terms
defined in Section 4.1. Also, π-calculus terms are considered up to α-equivalence;
so each term is ‘equal’ to all its α-equivalent ones. The definitions of substitution
and α-equivalence of the π-calculus are standard and not provided in the main
body of the paper. (They are, however, given in Appendix C for the sake of
completeness.)

We now have all the ingredients to state a correspondence between the two
calculi. The following theorem establishes that our formulation of the early π-
calculus is operationally correct with respect to its original formulation.
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Theorem 5 (Operational Correspondence: Early π-calculus). Luca: Check

the actual formulation of this result. For all p, q ∈ Π, p
`→ q ⇔ JpKπ

J`Kπ→ JqKπ,
where ` ranges over the labels of the form τ , ab, ab and a(b) from the original
early pi-calculus.

The proof of Theorem 5 is contained in Appendix F.

5.3 A remark on the Barendregt Convention

Typically, in calculi with binders, terms are assumed to make use of some dis-
cipline on the choice of the names for the variables used in programs. This
discipline is the so called Barendregt Convention and roughly states that, within
a term, the names of bound variables must be chosen to be all different and also
different from every free variable. For instance, in the context of the λ-calculus,
the term (λx.(x y) x) is not considered part of the λ-calculus by the Barendregt
Convention. This term is considered only in one of its α-equivalent forms that
does respect the convention, for instance the term (λz.(z y) x).

This discipline on the names for variables is very useful in the development of
the theory of calculi with binders. In particular it prevents the user from dealing
with technicalities due to name clashes and allows one to focus directly on the
computational aspects of a calculus. Of course, when implementing a calculus,
the Barendregt Convention must, however, be addressed with a pre-processing
step.

Our formulations of the lazy λ-calculus and of the early π-calculus do not
make use of this convention; in fact, we do not make use of any convention
regarding the name of atoms used in the terms.

Considering, for instance, our formulation of the lazy λ-calculus, the user
can write the term (λ([a].(λ([b].a b))) b). This term obviously does not ad-
here to the Barendregt Convention, as the atom b is used both as bound and
free. The reader may notice however that this is not a problem in our formu-
lation of the λ-calculus. Indeed, the term is automatically converted to an α-
equivalent good one at the moment of performing a computational step. A tran-
sition (λ([a].(λ([b].a b))) b)→λ([c].b c) is indeed provable by rule (app), for all
atoms c that are fresh in the subterm (a b) of λ([b].a b)). In more detail, what

happens in this situation is that the premise y0
a
T7→x1−→ y1 of the rule (app) can-

not be satisfied in general when y0 is instanciated for the term (λ([b].a b))) b).
Indeed, without α-conversion, the term (λ([b].a b))) b) does not perform a tran-

sition
a
T7→b−→ since the bound atom b is not fresh in the argument term b, and

the premise a#z of (abs1Ts), instanciated in that context as b#b, would not be
satisfied. Fortunately, we set the term-for-atom substitution transitions to be up
to α-equivalence, so one instance of the rule

x ≈α y y
a
T7→b−→ z

x
a
T7→b−→ z

(a
T7→ b · upToα).
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is actually employed. The term (λ([b].a b))) b) is thus α-converted to another
term, which actually allows the premise a#z of (abs1Ts) to be satisfied.

The nominal machinery employed here plays a crucial role in this scenario,
allowing for an implicit search for a suitable fresh atom, which is clearly guar-
anteed to exist.

In some sense, Nominal SOS naturally implements a sort of lazy Barendregt
Convention, i.e. the change of atom names into suitable ones is performed during
the computational steps, on demand, and only when facing the name clashes.
All of this is possible thanks to the adoption of the nominal approach.

In implementations, these nominal calculi formalized using Nominal SOS do
not require any pre-processing step in order to change the name of atoms in
programs. This is particularly desirable in distributed contexts, where different
pieces of code may come from different locations, written by different program-
mers who have no idea about the names for bound atoms used by others, and
still their programs must be combined together.

For the sake of clarity, we point out that, by not assuming the Barengret
Convention, the user can also write terms such as (λ([a].(λ([a].a) a) b). In this
case the computational step behaves as expected. In particular we can prove
the transition (λ([a].(λ([a].a) a) b)→ (λ([a].a) b), where the term λ([a].a) re-

mains unchanged because of the transition λ([a].a)
a
T7→b−→ λ([a].a) proved using

rule (abs2Ts).

6 Nominal bisimilarity

Very often, in the theory of calculi with binders, the ordinary bisimilarity is
not a satisfactory equivalence. This is typical in calculi that allow terms to per-
form transitions whose labels mention fresh or bound variables. As a prominent
example, we show the following example taken from [48] in the context of the
π-calculus. We first recall the definition of bisimilarity over π-calculus processes,
for which we overload the symbol ↔––.

Definition 15 (Bisimilarity) Bisimilarity ↔–– is the largest symmetric binary

relation ∼ on Π such that whenever P ∼ Q, for all labels l it holds that if P
l→P ′

then there exists Q′, such that Q
l→Q′ and P ′ ∼ Q′.

With respect to bisimilarity, the processes

P = νz.xz.
Q = νz.( xz. || νw.wy. )

are distinguished5. Indeed, since processes in the π-calculus are considered

up to α-equivalence, we have that P
x(y)→ . On the other hand Q can not turn

5 The process νw.wy. performs an output on a channel which is not known by the
external environment, therefore this process is bisimilar to 0.

24



its binder x(z) into x(y) by α-conversion, because y is one of its free variables.

Therefore Q
x(y)9 . Of course, P and Q should not be distinguished, and what

actually happens in the theory of the π-calculus is that the transitions of the

form
x(z)→ from P and Q are matched only for those variables z that are free

in both P and Q. The bisimulation game is thus modified, and not all of the
transitions from P and Q are considered in the matching process6.

In what follows, we define this modified type of bisimilarity, here called nom-
inal bisimilarity. In doing so, the reader should bear in mind that Nominal SOS
models labels as open terms. In our framework, we therefore require that the
bisimilarity would match labels containing abstractions only when the bound
atoms are fresh in both of the considered terms. For instance, the bisimilarity
in our formulation of the π-calculus will try to match bound output transitions
of P and Q only for labels of the form bout(a, [b]0) where the atom b is fresh in
both P and Q.

Definition 16 (Nominal bisimilarity) Let T be an NTSS. Nominal bisimi-
larity ↔––T is the largest symmetric binary relation ∼ over closed terms of T such
that whenever P ∼ Q, for all labels l such that for all a ∈ ba(l), a#P , a#Q, it

holds that if P
l→P ′ then there exists Q′, such that Q

l→Q′ and P ′ ∼ Q′.

In what follows we will always omit the subscript in ↔––T , and write ↔–– for
nominal bisimilarity, as T will be always clear from the context.

We prove that what the nominal bisimilarity does in the ordinary π-calculus is
exactly what bisimilarity does in our formulation of the π-calculus when ignoring
the matching of substitution transitions in the bisimulation game. We denote this
equivalence with↔−. In what follows the encoding J·Kπ is the mapping defined
in Section 5.2.

Theorem 6 (Nominal bisimilarity is bisimilarity, when ignoring sub-
stitutions). For all P,Q ∈ Π, P ↔–– Q if, and only if, JP Kπ↔− JQKπ.

The proof of Theorem 6 can be found in Section I.
The reader may wonder what is the equivalence over π-calculus terms that

corresponds to nominal bisimilarity, including substitution transitions. The next
theorem provides us with an answer: nominal bisimilarity in our formulation of
the early π-calculus coincides with Sangiorgi’s open bisimilarity, see [48, Section
4.2] and [47]. The open bisimilarity involves substitutions, which are defined as
follows, as recalled from [48] (Definition 1.1.3 on page 14).

Definition 17 (Substitutions involved in the open bisimilarity) A sub-
stitution σ is a function on names that is the identity except on a finite set.

In this section we use the symbol σ for substitutions, as it is standard in the
literature on the π-calculus. The reader should not however confuse substitutions
with the sorts of Definition 1.

We now recall the definition of open bisimilarity from [48, 47].

6 This point is explained carefully on pages 64-65 of [48].
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Definition 18 (Open Bisimilarity) Open bisimilarity↔o is the largest sym-
metric relation ∼ on Π such that whenever P ∼ Q, and σ is a substitution (of

Definition 17), if Pσ
α→P ′, then there exists Q′, such that Qσ

α→Q′ and P ′ ∼ Q′.

The reader should notice that this definition is the very basic formulation
of open bisimilarity, which does not involve distinctions, see [48] and [47]. In
Definition 18, it is important to note that the ranging over all the substitutions
is performed at each step of the bisimulation game.

Note furthermore that the substitutions involved in the open bisimilarity are
capture avoiding. This is a necessary constraint, for open bisimilarity would not
be a satisfactory equivalence otherwise. The reader can indeed consider the two
terms

P = νa.bb.

Q = νc.bb.

and the substitution σ that maps the name b to a and is the identity over all
the other names. If we allowed the application of substitutions to capture free
names, by applying σ to the two terms above we have that Pσ = νa.aa., which
is nominal bisimilar to 0, and Qσ = νc.aa., which can perform an output on
the channel a. In this scenario, the terms P and Q would be thus distinguished,
even though they are α-equivalent.

Theorem 7 (Open bisimilarity and Bisimilarity coincide). For all P,Q ∈
Π, P ↔o Q if, and only if, JP Kπ ↔–– JQKπ.

The proof of Theorem 7 can be found in Section J.
In passing, we briefly discuss the version of open bisimilarity that involves

distinctions. Indeed, the open bisimilarity as in Definition 18 is not a satisfactory
equivalence for the π-calculus, as it does not take into account the fact that two
atoms that are bound by a restriction ν can never be identified. This point is
made clear on page 167 of [48] by means of an example which we shall now show.
Let us consider the two processes P and Q defined as follows7:

P = νz.νw.xz.xw. (z ||w)
Q = νz.νw.xz.xw. (z.w + w.z).

We have that P and Q are not open bisimilar. To see this, it suffices to note
that the subterm (z ||w) of P and the subterm (z.w + w.z) of Q are not open
bisimilar. Indeed, if we fix a substitution σ that maps w to z and is the identity
over all the other channel names, we have that (z ||w)σ

τ→ and (z.w+w.z)σ
τ9 .

However, both the channel names z and w occur underneath a ν restriction
and they are thus forced to be distinct. Therefore, no substitution can make the
two channels suddenly able to communicate with each other.

7 In order to present our point more clearly, the two processes (z ||w) and (z.w+w.z)
employ a CCS-style syntax.
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The processes P and Q should indeed be considered equivalent. Sangiorgi
equips the open bisimilarity with distinctions in [47], see also [48], that keep
track of the names that cannot be identified during the bisimulation game. The
open bisimilarity with distinctions is a satisfactory equivalence for the π-calculus,
as argued in [48].

However, the scenario discussed above is too dependent on the intrinsic mean-
ing of binders to be captured by a general theory like the one we put forward
in this paper. For instance, in the π-calculus there are two binders νa.P and
a(b).P , but only the former populates distinctions. The latter binder has a dif-
ferent meaning. Since this work addresses only a basic and uniform account of
binders, providing an adaptation of the nominal bisimilarity of Definition 16
in order to tackle distinctions, although possible, is not considered in this first
development and is part of our future work.

7 Applicative Bisimilarity

In the context of the lazy λ-calculus, one of the most interesting notions of
bisimilarity is the applicative bisimilarity due to Samson Abramsky, [2]. Below
we recall the definition of this equivalence. We also recall that a λ-term is closed
if it contains no free variables, and that we denote the set of closed λ-terms by
Λ0.

Definition 19 (Applicative Bisimilarity in the λ-calculus) The applicative
bisimilarity is the largest symmetric relation ' on Λ0 such that whenever M '
N , if M→λa.M ′ for some variable a and M ′ ∈ Λ, then there exist some variable
b and N ′ ∈ Λ such that

– N→λb.N ′, and
– M ′[P/a] ' N ′[P/b], for all P ∈ Λ0.

It is important to remark that the applicative bisimilarity of the λ-calculus
is defined over closed λ-terms. Indeed, this equivalence is strongly unsatisfactory
over terms that contain free variables. For instance, for any variables a, b and c,
it holds that a ' b and λa.b ' λa.c.

The notion of applicative bisimilarity can be accommodated within the con-
text of Nominal SOS in the obvious way.

Definition 20 (Applicative Bisimilarity over C(Σλ)) The applicative bisim-
ilarity is the largest symmetric relation ' on C(Σλ)0 such that whenever M '
N , if M→λ([a].M ′) for some atom a and M ′ ∈ C(Σλ), then there exist some
atom b and N ′ ∈ C(Σλ) such that

– N→λ([b].N ′), and
– M ′[P/a] ' N ′[P/b], for all P ∈ C(Σλ)0.

The following theorem states that the applicative bisimilarity of our formu-
lation of the lazy λ-calculus and that of its original formulation coincide.
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Theorem 8 (Applicative Bisimilarity in Λ and in Σλ coincide). For all
M,N ∈ Λ0, M ' N if, and only if, JMKλ ' JNKλ.

The proof of Theorem 8 follows easily from Theorem 4, which states the op-
erational correctness of our lazy λ-calculus with respect to the original calculus.

It is now natural to wonder what are the relationships between the applicative
and the nominal bisimilarity in our formulation of the lazy λ-calculus. Unfortu-
nately, nominal bisimilarity is a very unsatisfactory equivalence over C(Σλ)0. In
particular, all the terms in C(Σλ)0 that have a normal form are equated.

Theorem 9 (Nominal Bisimilarity equates all ’terminating’ terms).
For all M,N ∈ C(Σ)0, if M and N have a normal form then M ↔–– N .

The proof of Theorem 9 can be found in Section L.
Notice moreover, that both nominal and applicative bisimilarity equate all

the terms that do not have a normal form. The implications of Definitions 16 and
20 are indeed vacuously true. From this fact and from Theorem 9, the following
theorem easily follows.

Theorem 10 (Applicative is included in the nominal bisimilarity). It
holds that '⊂↔––.

However, the applicative bisimilarity is not included in the nominal bisimi-
larity. This is stated in the following theorem.

Theorem 11 (Nominal is not included in the applicative bisimilarity).
It holds that ↔–– 6⊂'.

Theorem 11 follows easily from the fact that applicative bisimilarity distin-
guishes some binding-closed terms that have a normal form. Any two such terms
are counter-example witnesses for Theorem 11. By way of example, let us con-
sider the two terms M = λ([a].a) and N = λ([a].(a a)). Notice first that M and
N are binding-closed and they have a normal form. By Theorem 9 we have there-
fore that M ↔–– N . However, it holds that M 6' N . To see this, the reader should
notice that after the ’parameter passing’ of the term N , the two terms are distin-
guished. Namely, at the second step of the applicative bisimilarity we are required
to check, among other checks, whether the two terms a[N/a] = λ([a].(a a)) and
(a a)[N/a] = (λ([a].(a a)) λ([a].(a a))) are applicative bisimilar. This is not the
case, as the former has a normal form while the latter does not have a normal
form. We have that λ([a].(a a)) 6' (λ([a].(a a)) λ([a].(a a))) and consequently
M 6' N .

From the fact that the applicative bisimilarity of our lazy λ-calculus coincides
with that of its original formulation (Theorem 8), the following theorem follows
as a straightforward consequence of Theorems 10 and 11.

Theorem 12 (Nominal and Applicative Bisimilarity relation through
the encoding). For all M,N ∈ Λ0,

– M ' N implies JMKλ ↔–– JNKλ, and
– JMKλ ↔–– JNKλ does not imply M ' N .
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7.1 Characterizing applicative bisimilarity in terms of nominal
bisimilarity

In this section we present a variation on the semantics of the nominal lazy λ-
calculus from Section 5.1 that ensures that the nominal bisimilarity and the
applicative bisimilarity coincide.

The semantics employs the signature Σλ as given in Section 3 and also re-
peated in Section 5.1. The semantics of this formulation of the lazy λ-calculus
contains the transition → with the same meaning as in Section 5.1. It also con-

tains transitions
P→ , where P is a binding-closed term. For terms M , N and

a binding-closed λ-term P , a transition M
P→N can be read as the term M

progresses to N when it is applied to the argument P . The rules for term-for-
atom substitution transitions, as described in Section 4.1, are also part of the
semantics. The following rules define our variant of the formulation of the lazy
λ-calculus.

(abs1AP)
λ([a]x)→λ([a]x)

x0
a
T7→y−→ x1 ∀b.(b#y)

(abs2AP)
λ([a]x0)

y→x1

x0→ y0 y0
x1→ y1 y1→ y2

(app1AP)
(x0 x1)→ y2

(x0 x1)→ y1 y1
x2→ y2

(app2AP)
(x0 x1)

x2→ y2

Moreover, the transition relations → ,
P→ for any binding-closed term P , and the

term-for-atom substitution transitions are up to α-equivalence. Recall that, by
Definition 14, this means that the set of rules for the language contains also the
rules for α-conversion transitions and the rules for atom-for-atom substitution
transitions. The rules for atom-for-atom substitution transitions are also set to
be up to α-equivalence.

It is worth noting that the formulation above of the lazy λ-calculus performs
the parameter passing only of binding-closed terms. To see this, the reader can
notice that the premises ∀b.(b#y) of rule (abs2AP), which stand for the infinite
conjunction of premises {a#y | a ∈ C}8, are simultaneously satisfied only when
the term instanciated for y does not contain free atoms, i.e. it is binding-closed.
If a term contains free atoms then one of the premises would not be satisfied

and the rule would not be applicable. So to be clear, in a transition M
P→N , the

term P must be binding-closed.
Restricting the parameter passing only to binding-closed terms makes things

simpler when proving that applicative and nominal bisimilarity coincide and is
in line with the definition of applicative bisimilarity. Consider for instance two

8 We recall that, in Definition 7, the indexing sets I, J and K are possibly infinite.
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λ-terms M and N and let us have that M ' N . If we were to remove the
premises ∀b.(b#y) from rule (abs2AP), then we would admit also transitions of

the form M
P→N , with P a term that is possibly not binding-closed. To prove

JMKλ ↔–– JNKλ, we must thus have that the behaviours of M and N match also
over those transitions. However, from M ' N we can only conclude that M
and N behave the same when the argument P is in Λ0, see Definition 19, and

therefore that JMKλ and JNKλ behave the same only for those transitions
P→

where P is in C(Σ)0.
The reader is also invited to notice that, in this formulation of the lazy λ-

calculus, the treatment of the λ-abstraction is very similar to the way the early
π-calculus treats the input prefix operator. The purpose of both these two binders
is indeed very similar: both accept an argument from the external environment.
However, their treatment in the classic formulations of the λ- and π-calculus
is rather different. In the λ-calculus, the semantic rules detect the need for an
argument passing by detecting syntactically the λ-abstraction involved, as in
the premise x0→λa.y0 of the rule (appO) of Section 5.1. Other formulations of
λ-calculi typically act in the same way. For instance, they are usually based on
the classic β-rule

(λa.M N)→M [N/a],

which syntactically detects the presence of an abstraction as left operand of an
application.

In the early π-calculus, the input prefix operator has instead the capability
to progress spontaneously. With the rule (inO) of Section 5.2, namely,

a(b).x
ac→x[c/b],

the process progresses as if the channel name c has been actually passed.
The reader can see that in the formulation above, by means of rule (abs2AP),

we formulated the λ-calculus following the approach of the π-calculus. The same
spontaneous progress is possible from abstractions. Rule (app2AP) allows appli-
cations to be fed with arguments, too. After the normal form of an application is
calculated, the argument passing and the consequent progress take place. Rule
(app2AP) is necessary for the nominal bisimilarity to equate, for instance, ab-
stractions with applications. Consider indeed the identity function λ([a]a) and
the application λ([b]λ([a]a)) c which reduces to the identity function. A rea-
sonable equivalence relation might want to consider these two terms equivalent.
However, if we omitted (app2AP) the nominal bisimilarity would distinguish the

two terms, as the term λ([a]a) can perform transitions of the form
P→ that the

term λ([b]λ([a]a)) c cannot match.
The following theorem states that in sharp contrast to Theorem 12, applica-

tive bisimilarity in the lazy λ-calculus coincides with nominal bisimilarity in the
nominal formulation of the lazy λ-calculus given above.

Theorem 13 (Applicative Bisimilarity in Λ and Nominal Bisimilarity
in the new formulation of λ coincide). For all M,N ∈ Λ0, M ' N if, and
only if, JMKλ ↔–– JNKλ.
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The proof of Theorem 13 can be found in Section M.

8 Related Work

Nominal SOS is not the only approach studied so far in the literature that aims
at a uniform treatment of binders and names in the operational semantics of
programming and specification languages. We are aware of a number of existing
approaches that accommodate variables and binders inside the SOS framework,
namely those by Fokkink and Verhoef in [15], by Middelburg in [30, 31], by
Miller and Tiu in [33] and by Fiore and Staton in [13] (originally, by Fiore and
Turi [14]). Moreover, Gacek, Miller and Nadathur, in [20], Lakin and Pitts in
[27] (MLSOS) and also in [28, 29, 26] (αML), and Sewell at al. in [49] have also
proposed formalization of binders within SOS-like frameworks. In the following
sections we discuss in some detail the approaches that are more related to our
work.

8.1 MLSOS and αML

In [27], Lakin and Pitts provide the meta-language MLSOS in which the various
transition relations of SOS can be specified in a functional style language. In
this section we do not repeat the definitions of the system from [27]. However,
a reader who is familiar with functional programming will have no difficulty in
understanding the code fragments we present.

In [27], the authors provide a formulation of the λ-calculus that employs the
parallel reduction strategy, i.e. the reduction is performed in any context. Below
we show a formulation of the simpler call-by-name λ-calculus, see [6]. Intuitively,
in the call-by-name λ-calculus the reduction is inductively shared only to the first
argument of an application. Namely, if M→M ′, then (M N)→ (M ′ N). The
π-calculus is not formalized in [27] and therefore we do not provide code for
it. The example for the λ-calculus suffices to show to the reader how MLSOS
provides a language for the specification of the SOS semantics of calculi with
binders.

1 : nametype var ; ;
2 : datatype lam =
3 : Var o f var
4 : Lam of <<var>> lam
5 : App o f lam ∗ lam ; ;
6 :
7 : l e t r e c sub x t t ’ = narrow t ’ as
8 : Var y : ( ( x=:=y ) ; t or ( ( x=/=y : var ) ; t ’ )
9 : Lam <<a>>t ’ ’ : Lam <<a>>sub x t t ’ ’ :
10 : App ( t 1 t 2 ) : App ( ( sub x t t 1 ) ( sub x t t 2 ) ) ; ;
11 :
12 : l e t r e c beta ( t 1 t 2 ) = narrow ( t 1 t 2 ) as
13 : ( t t ) : yes
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14 : (App ( t 1 t 2 ) , t 3 ) : beta ( t 1 t 2 )
15 : (App ( (Lam <<a>>t 1 ) , t 2 ) , t ’ ) :
16 : some t 1 ’ , t 2 ’ : lam in
17 : sub ( a , t 2 ’ , t 1 ’ ) =:= t ’ ; ;

Lines 1-5 define the grammar for λ-terms, lines 7-10 define the substitution
procedure and lines 12-17 defines the reduction relation. The reader can see how
the way of defining the terms of a calculus recalls the way of defining inductive
types in a functional language. Also, the definition of the various transition
relations are encoded as some sort of function definitions of functional languages.

It is important however to notice that, in MLSOS, the only operations allowed
on atoms are equality tests and the generation of fresh atoms. In MLSOS, in a
λ-term

λ〈〈a〉〉(V ar a)

the variable a actually ranges over the infinite set of atoms, and will be instan-
ciated to a fresh atom on demand. The user cannot name atoms directly.

This approach stems directly from Nominal Logic [41]. In particular, the nom-
inal N-quantifier is employed in this case, see also [16] where it was introduced.
This solution to the modeling of languages was adopted already in FreshML,
[51, 50]. FreshML adds to ML the capability to generate fresh new names with
the keyword fresh. For instance, in the term let x = fresh in Lam〈x〉(V ar x),
the occurrences of the keywork fresh are evaluated by generating a name never
seen before and placed in the body of the abstraction. The management of this,
and the actual atom names employed in the execution of a program, are hidden
to the user.

A different choice is instead made in the meta-language αML, [28, 29], which,
in a sense, is what MLSOS evolved into. The syntax of αML shares many similar-
ities with the one of MLSOS, in particular, it stems from its functional language
style syntax. However, some peculiarities of αML also come from the world of the
constraint logic programming, [25]. The management of variables of αML follows
a different philosophy. As argued in Lakin’s Thesis [26], where an excellent and
complete overview of the language αML can be found, in the term

Lam〈〈x〉〉(Lam〈〈y〉〉(V ar x))

the variables x and y are not assumed to be distinct just for having a distinct
name. This term can denote both the λ-terms λa.λb.a and λa.λa.a, as y is not
required to denote a name that is different to the one denoted by x.

One can however state explicitly some conditions on name. In particular,
the user can disseminate the program with constraints of name equality and
freshness. If we wish the variables x and y to denote different names in the term
above, we can rewrite it in αML as

∃x : var.∃y : var.(x#y & Lam〈〈x〉〉(Lam〈〈y〉〉(V ar x))).

The management of constraints is delegated to constraint solving facilities of
constraint logic programming. The interested reader is invited to refer to Lakin’s
Thesis [26].
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The reader must notice that the handling of variables in all of the mentioned
approaches (MLSOS, FreshML and αML) is different from how Nominal SOS
handles name. In particular, in those approaches the user does not have access
to concrete atoms/variables directly. This goes along with what in the nominal
context is called the equivariance property, see [16] and especially [41]. This
property roughly states that the meaning of programs should not depend upon
the concrete atom name which is chosen in the implementation of abstractions.
On the other hand, within Nominal SOS one can write programs whose behaviour
is strongly associated to a particular bound name. For instance, let us consider
augmenting the rules of our formulation of the lazy λ-calculus with the following
rule, where N is a given closed term and a is a fixed atom. (The following rule
is therefore not replicated for all atoms and closed terms.)

x
a 7→N−→ x′

λ([a]x)→x′

In this case, the calculus acts non-deterministically for λ-abstraction terms
that use the atom a as bound. Namely, given a closed term M , the term λ([a]M)
can perform two transitions. We can apply the rule (abs) of Section 5.1 in order
to prove the standard transition λ([a]M)→λ([a]M). On the other hand, we can
apply the rule above. Applying this rule, the abstraction λ([a]M) pretends that
the parameter passing of a term N took place. Since the rule above is defined
only for the atom a, the rule above cannot be applied for a term λ([b]M), with
a and b distinct atoms.

Defining the behaviour of programs in a way that it depends on specific bound
names should be considered bad language design. In Nominal SOS, however, a
language specifier is free to explore also this possibility.

Another difference between Nominal SOS and the approaches of MLSOS and
αML is that the latter ones provide for a primitive built-in support for managing
the abstract syntax trees of terms which are identified up to α-equivalence. The
motivation for such a choice is that this support for α-equivalence is required in
any calculus that contains binders. If α-equivalence is not built-in, this support
needs to be coded up by hand. In our context, the code for this management
does not represent much of a problem; indeed it can be automatically generated,
as shown in Section 4. Secondly, as our design choice, we prefer α-equivalence
to be a transition in the semantics just like any other, so that it can be the
subject of meta-theorems based on the shape of rules that may be developed in
the future.

8.2 FOλ∆∇

In [33], Miller and Tiu make use of a logic that is already equipped with λ-terms;
this approach is called the λ-tree approach to encoding syntax. The particular
logic they employ is called FOλ∆∇ (fold-nabla). The main peculiarity of this
logic is that, besides containing the connectives and quantifiers of ordinary logic,
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terms can be of the form λy.P , meaning that the variable y is bound in the
body P . Also the notion of application as higher-order term passing is already
embedded in the logic. The logic is equipped with a sequent calculus that takes
care of this λ-calculus style features and also deals with the technicalities that
arise with dealing with binders. Another distinctive feature of the logic FOλ∆∇

is the use of the new quantifier ∇. Basically the meaning of a formula ∇x.Φ is
that x is a fresh new name within the scope of the quantifier ∇, i.e. within the
formula Φ.

A user can use the logic in order to specify the semantics of calculi with
binders. In [33], the authors formulate the late and early π-calculus. The seman-
tics of these calculi are presented conveniently by a set of rules. For instance,
the rule

P
α→R

P +Q
α→R

is expressed by the FOλ∆∇ formula (P
α→R) ⊃ P + Q

α→R. This formula
formalizes a part of the behaviour of the choice operator in much the same way
as the rule (sum1) does in our formulation of Section 5.2. The symbol ⊃ stands

for the standard implication, P ,Q and R are variables ranging over terms,
α→ is

a binary relation symbol9 in the signature of the logic and + is a binary function
symbol in the signature of the logic. The whole set of rules that define the late
and the early π-calculus can be found in [33]. Here we discuss only a few rules
that highlight the characteristic features of the approach. Consider for instance
the following rule

∇x.(Px A→Qx)
(parRes1)

νx.(Px)
A→ νx.(Qx)

Thanks to the quantifier ∇, the premise of the rule is satisfied when the process
that instanciates the variable P performs a transition when the name x in its
body is chosen fresh. If this happens then the term νx.P can progress accordingly.
The quantifier ∇ is thus very expressive, and offers the possibility to treat names
as fresh new ones when needed. This feature turns out to be frequently useful,
especially in the context of the π-calculus and similar calculi.

The reader may want to consider also the rule for the input prefix

(in)

in(λy.M)
↓XU→ (MU)

In this rule X and U represent variables for channel names. The computa-
tional step for input prefix processes is formalized by means of the λ-calculus
style parameter passing embedded in the logic.

The sequent calculus for FOλ∆∇ takes care of deriving the expected formu-
lae, dealing with the binders with its λ-calculus style features and with special

9 In [33], relations also are labeled with a type. In order to ease the presentation we
here omit type information.
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management for the quantifier ∇. The sequent calculus is not showed here, the
interested reader can consult [33] and [32] for it.

The main difference between Nominal SOS and the approach in [33] is that in
Nominal SOS no technicality concerning the use of binders is hidden and given as
built-in. Moreover, Nominal SOS does not rely on existing notions for parameter
passing. The language specifier needs to define nearly everything. This may give
the user also the possibility to explore, for instance, other types of substitution
or equivalence of terms.

8.3 SOS in Abella

In [20], Gacek, Miller and Nadathur describe a method to specify calculi with
binders. They make use of the λ-tree syntax approach, discussed in the previous
section about the approach with FOλ∆∇. The aim of the authors is to use
the proof assistant Abella, [18], in order to reason about calculi with binders.
Abella is a proof assistant for the specification logic G, [19], which we do not
discuss here. In the approach of [20], the authors do not make use of the logic G
directly; they instead provide a second specification logic that is more suited for
their purposes. This latter logic is the theory of the intuitionistic second-order
hereditary Harrop formulae, there called hH2. The logic hH2 turns out to be a
convenient vehicle in order to formulate rule-based definitions such as the ones
encountered in SOS. It also turns out that, since hH2 is a subset of λProlog,
[39], specifications in hH2 can be computed and executed effectively.

The authors provide an encoding from formulae of hH2 into the logic G,
making the use of the Abella proof assistant possible.

In [20], the authors formalize the simply typed call-by-value λ-calculus, see
[7]. Roughly speaking, in the call-by-value strategy, the λ-calculus parameter
passing involved in the application (λx.M) N is performed only when the term
N is a value, i.e. when N is an abstraction. The term N is thus first evaluated
until it becomes a value. For the sake of the presentation, we show the code for
the call-by-value λ-calculus in its untyped version.
∀ a,r [value(abs a r)]
∀ m,n,m’ [step m m’ ⊃ step(app m n) step(app m’ n)]
∀ m,n,n’ [value m ∧ step n n’ ⊃ step(app m n) step(app m n’)]
∀ a, r, m [value m ⊃ step(app(abs a r) m) (r m)]
The predicate ’value’ recognizes values, i.e. abstractions. The term (app m n)

corresponds to the application (M N). In the formulation of [20], the term
(abs a (λx.r x)) represents an abstraction in the programming language in which
the bound variable x has type a. The predicate ’step’ is defined by the last three
implications in the expected way.

Since the theory proposed in [20] follows the λ-tree approach, its differences
with Nominal SOS are by and large the same stated in the previous section, con-
cerning the approach with FOλ∆∇. As another difference, we can see that the
logic hH2 lacks an explicit and clear mechanism for stating freshness conditions.
Note, however, that the specification logic G of Abella is in general more pow-
erful and, in particular, it is capable of expressing freshness conditions. When
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necessary, the language specifier can modify the code produced by the encoding
from hH2 into the logic G in order to state freshness conditions.

8.4 SOS with Ott

In [49], Sewell et al. describe Ott, a tool support for the specification of calculi
with binders in SOS. The general idea behind Ott is similar to the one for
the approach described in the previous section for SOS specifications in Abella.
The authors provide a meta language for formulating the semantics of calculi
with binders and the purpose of the Ott tool support is to generate from the
specification the code for some popular proof assistants. In this approach, the
proposed meta-language is not a logic as in the case of the previous section; it
is instead a simple and intuitive language for which we shall give an example
below.

Again, we do not describe the entire system, but the reader can obtain an idea
of how this system works by means of an example. In [49], the authors formalize
the call-by-value λ-calculus. As the language tends to be particularly verbose,
below we present our formulation of the simpler call-by-name λ-calculus. The
code below has been also stripped of some decorating syntax and those parts
that are not relevant to understand Ott at this stage. The interested reader is
invited to read [49] for a full description of the system and the syntax employed.

grammar
term t : : ’ t ’ : :=

x : : var
\x . t : : lam (+ bind x in t +)
t t ’ : : app

te rmina l s : : ’ t e rmina l s ’ : :=
\ : : lambda {{ tex \ lambda}}

(1 ) −−> : : red {{ tex \ l ongr i ghta r row }}

defn
t 1 −−> t 2 : : reduce : : {{com [ [ t 1 ] ] r educes to [ [ t 2 ] ] } }

−−−−−−−−−−−−−−−−−−−−−−−−−− : : ax
\x . t 1 t 2 −−> { t 2 /x} t 1

t 1 −−> t 1 ’
−−−−−−−−−−−−−−−−−−−−−−−−−− : : r u l e 1
t 1 t −−> t 1 ’ t

The first part of the code is devoted to the formalization of the terms of the
calculus. It is important to note that the language provided by Ott requires the
user to use the special decoration (+ bind x in t +) in order to specify binding
information. The rest is quite simple to understand. In particular, the language
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provided by Ott allows the user to specify the SOS semantic rules for the calculus
at hand as she/he would draw them from the paper to the text editor.

The tool support Ott takes the specification and returns code for the most
popular interactive theorem provers, such as Coq [4], HOL [43] and Isabelle/HOL
[40]. Nicely, Ott also returns code for a LaTeX presentation of the calculus. The
reader can see that the listing above is indeed disseminated every now and then
with presentational information. For instance, with the line that we labelled (1),
the latex code generated will be such that the transition relation denoted −− >
in the text editor will be represent by the symbol −→.

Nominal SOS and the approaches discussed in the previous sections employ a
single binding. Roughly speaking, they are abstractions in the style of λ-calculus
where in the term λx.M only one variable can be bound. Ott allows for more
complex binding structures, for instance structured patterns, multiple mutually
recursive let definitions, and dependent record patterns, see [49] and [23].

However, the single binding employed by Nominal SOS and by the other
frameworks has proved to be expressive enough for most of the cases.

8.5 General Remarks

As a general remark on the related work, the mentioned systems attack the prob-
lem of defining the operational semantics of nominal calculi using an approach
that is different from the one proposed in this paper. Our long-term goal is to
develop systematically a meta-theory of SOS for calculi with binders and, fol-
lowing the lead of the meta-theory of ordinary SOS, to investigate at a syntactic
level those semantic phenomena that are specifically concerned with binding.

From this point of view, the previous approaches do not seem close enough
to the standard framework of ordinary SOS, while Nominal SOS, being a slight
variation of it with specific primitive notions for dealing with binders, is fairly
close. We believe that the close relationship between Nominal SOS and ordinary
SOS will have the following benefits.

1. We will be able to lift/adapt already existing meta-theory to the context of
binders with relative little effort. Transporting the body of meta-theoretic
results to the contexts of the other approaches seems to be a more difficult
task.

2. The content of the meta-theorems and the line of investigation will resemble
closely those achieved so far for ordinary SOS, and with which SOS users
are familiar.

3. Moreover, thanks to the nominal approach, we hopefully have an intuitive
and familiar language with which we could explain why certain calculi afford
a property while others do not, for instance by means of presence/absence of
freshness premises, or of a syntactic discipline in the use of them or of other
related nominal concepts.

Carrying out a study of the meta-theory of languages with binders based on
the other approaches is still possible, but it is not part of our immediate future
research goals.
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9 Conclusions and Future works

In this paper, we have introduced a framework, called Nominal SOS, for mod-
elling the operational semantics of nominal calculi. The framework comes equipped
with the basic features used in defining such calculi, namely, substitution and
α-conversion. Since these notions are generated from the nominal signature they
can be replaced by, and the user can experiment with, for instance, other notions
of substitution. Our syntax has two levels of variables like the one in [53], but
we do not take permutations as primitive—because there is no need to do so; we
obtain α-conversion ‘for free’ based on atom-for-atom substitutions as a nominal
SOS theory. This suffices for our examples of interest, e.g. the λ- and π-calculi.

We used the framework to specify the semantics of the lazy λ-calculus and
early π-calculus and showed that our formulations of the semantics coincide
with the original ones. A notion of nominal bisimilarity arises naturally from
our framework. Moreover, we showed that the notion of nominal bisimilarity
in our semantics of the early π-calculus coincides with open bisimilarity in the
original semantics.

Nominal SOS provides a framework to extend the meta-theory of SOS to
the nominal setting. This paper contains only the basic developments of the
framework, accompanied by some examples. The framework seems close enough
to the formalization of the standard theory of SOS in such a way that the mode
of operation for carrying out meta-theory over Nominal SOS and the content of
the corresponding meta-theorems would resemble very closely those presented
for instance in [3, 38]. Hence, lifting previous results from the meta-theory of
standard SOS to the new context seems also feasible. Our main aim is to develop
the theory and applications of Nominal SOS so that it reaches a level of maturity
that is comparable to that of the theory of classic SOS, as surveyed in, e.g., [3,
38]. More specifically, the main goals of our future work are as follows.

– We intend to provide further evidence that Nominal SOS is expressive enough
to capture the original semantics of nominal calculi, such as variants of the
π-calculus and its higher-order version [46], the psi-calculi [8] and the object
calculi [1], and to prove formally the correspondence between the presenta-
tion in terms of Nominal SOS and the original ones. Also, we plan to address
different notions of equivalence betweens terms. Just to name a few exam-
ples, it would be worth defining within Nominal SOS a notion that is the
analogous of the applicative bisimilarity in the context of the λ-calculus, [2],
and investigating the relation between the notion of nominal bisimilarity and
the applicative bisimilarity. Also, an adaptation of the nominal bisimilarity
that coincides with the open bisimilarity with distinctions, [48, 47], when
applied to π-calculus terms.

– We plan to develop the meta-theory of Nominal SOS, for example by provid-
ing congruence formats ifor behavioural semantics n the context of calculi
with binders, possibly generalizing those proposed in [55] and [13], for in-
stance. Also, confluence is an important property that has not been tackled
yet by the theory of SOS in the context of rule formats. Many important
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confluence results stem from the realm of calculi equipped with binders;
the reader may indeed think of the λ-calculus and its variants. It would be
thus desirable to provide rule formats guaranteeing the confluence property
within the framework of Nominal SOS. Meta-theory over Nominal SOS can
be carried out also for all those phenomena that are specifically related to
binders. For instance it would be worth providing rule formats guaranteeing
that the late and early bisimilarity, see [48], coincide.

– We expect to extend a wealth of classic SOS meta-results and techniques to
the framework of Nominal SOS.

– We plan on providing tool support for Nominal SOS.

9.1 Extensions of the framework

In a sense, in this paper we have formulated Nominal SOS in its most basic
form. We are aware of a few possible extensions of the framework, which would
be worth adding.

Negative freshness premises. A possible extension of the framework would be to
add the possibility to have premises of rules of the form ¬(a#t), with t a term.
Intuitively, this premise is satisfied when the atom a is not fresh in the term t.
Negative freshness tests as premises do not seem to be employed in general in
the definition of nominal calculi, and thus they are left out in our formulation
of Section 3.

Variables in bound terms. It would be worth extending the syntax of nominal
terms of Section 2 by augmenting the grammar with the following form of terms

t ::= . . . | ([xA]tσ)[A]σ

Intuitively, x is a variable of atom sort. The reader may recall that the terms
defined in Section 2 are such that abstractions are only of form [a].t with a
concrete atom a. It is important to notice that, given a term t, the term [x].t is
an open term while the term [a].t is closed. This addition should be accompanied
by an extension of the set of possible premises in rules so that also premises of
the form x#t, with x a variable of atom sort are allowed. By way of example,
these two extensions would allow Nominal SOS to formulate the semantics of
the lazy λ-calculus with the following two rules.

λ([z]x)→λ([z]x)

x0→λ([z]y0) y0
z
T7→x1−→ y1 y1→ y2

x0 x1→ y2

The rules above use the variable z in order to range over the set of atoms.
These two rules alone can replace the rules (abs) and (app) of Section 5.1, which
use concrete atoms and they are thus replicated for every atom. The semantics
of the λ-calculus would be thus finitely formalized.
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Specific syntax to state the meaning of binders. Another possible extension of
the Nominal SOS framework is to augment the signature of an NTSS with infor-
mation that concerns the meaning of the binders in the language. The meaning
of binders used in nominal calculi can indeed be of various nature. For instance,
the binder λ in the formulation of the λ-calculus binds its argument atom in a
way that supports a substitution for it in a parameter passing fashion. On the
other hand, the meaning of the binder ν in the formulation of the π-calculus
binds its argument atom to indicate that its name must be considered private.

It would be worth investigating a suitable language that allows the user to
express how binders are intended to be used in the calculus. Insofar this subject
is concerned, we have no preliminary developments so far.
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A Useful definitions for nominal terms

We recall the syntax for nominal terms given in Definition 2.

t, u ::= 〈〉 | x | a | ([a]t) | f(t, . . . , tn) | 〈t, u〉.

We define V(t), the set of variables that occur in the term t, by induction on the
structure of t.

V(〈〉) = ∅
V(x) = {x}
V(a) = ∅
V([a]t) = V(t)

V(f(t1, . . . , tn)) = V(t1) ∪ · · · ∪ V(tn)
V(〈t, u〉) = V(t) ∪ V(u)

We define A(t), the set of atoms that occur in the term t, by induction on the
structure of t.

A(〈〉) = ∅
A(x) = ∅
A(a) = {a}
A([a]t) = {a} ∪ A(t)

A(f(t1, . . . , tn)) = A(t1) ∪ · · · ∪ A(tn)
A(〈t, u〉) = A(t) ∪ A(u)

We define ba(t), the set of bound atoms that occur in the term t, by induction
on the structure of t.

ba(〈〉) = ∅
ba(x) = ∅
ba(a) = ∅

ba([a]t) = {a} ∪ ba(t)
ba(f(t1, . . . , tn)) = ba(t1) ∪ · · · ∪ ba(tn)

ba(〈t, u〉) = ba(t) ∪ ba(u)

We define fa(t), the set of atoms a in A(t) that have an occurrence in t that is
not within the scope of an abstraction [a]. , by induction on the structure of t.
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fa(〈〉) = ∅
fa(x) = ∅
fa(a) = {a}

fa([a]t) = fa(t) \ {a}
fa(f(t1, . . . , tn)) = fa(t1) ∪ · · · ∪ fa(tn)

fa(〈t, u〉) = fa(t) ∪ fa(u)

B Useful definitions for λ-terms

We define FV (M), the set of free variables that occur in a λ-term M , by induc-
tion on the structure of M .

FV (a) = {a}
FV (λa.M) = FV (M) \ {a}
FV (M N) = FV (M) ∪ FV (N)

We say that a λ-term M is closed if FV (M) = ∅, i.e., if M does not contain free
variables.

Given a variable a and two λ-terms M and N , we define the substitution
operation M [N/a] defined inductively on the structure of M . In what follows a
and b are different variables.

a[N/a] = N
b[N/a] = b

(λa.M)[N/a] = λa.M
(λb.M)[N/a] = λb.(M [N/a]), if b 6∈ FV (N)

(M1 M2)[N/a] = (M1[N/a] M2[N/a])

We also recall that α-equivalence in the λ-calculus is defined as the least con-
gruence ≡ over λ-terms such that if b 6∈ FV (M) then λa.M ≡ λb.(M [b/a]).
In the λ-calculus, α-equivalent terms are considered syntactically equal and the
substitution operation defined above is total. For example, if c 6= b and c 6= a,

(λb.a)[b/a] = λc.b,

because λb.a ≡ λc.a.
Note that M [b/a] is defined (without any need for α-conversion) if, and only

if,

– either a = b
– or a 6= b and every subterm of M of the form λb.M ′ is within the scope of a
λa. .

More generally, M [N/a] is defined (without any need for α-conversion) if, and
only if, every subterm of M of the form λb.M ′ for some b ∈ FV (N), is either
within the scope of a λa. or is such that b = a..
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C Useful definitions for π-calculus terms

We recall that a π-calculus label α can have one of the following forms:

α ::= τ | ab | ab | a(b)

where a and b are two channel names.
We define names(α), the set of names that occur in the label α, as follows.

names(τ) = ∅
names(ab) = {a, b}
names(ab) = {a, b}

names(a(b)) = {a, b}

The set bn(α) of names that are bound in the label α is defined as follows.

bn(τ) = ∅
bn(ab) = ∅
bn(ab) = ∅

bn(a(b)) = {b}

We define fn(p), the set of names that occur free in the process p, as follows.

fn(0) = ∅
fn(τ.p) = fn(p)

fn(ab.p) = {a, b} ∪ fn(p)
fn(a(b).p) = {a} ∪ (fn(p) \ {b})

fn(νa.p) = fn(p) \ {a}
fn(p+ q) = fn(p) ∪ fn(q)
fn(p || q) = fn(p) ∪ fn(q)

fn(!p) = fn(p)

Given a π-calculus term p and names a and b, we define the substitution operation
p[b/a] inductively on the structure of p. In what follows a, b, c and d range over
names. Substitution acts in the expected way over names; in particular a[b/a] = b
and c[b/a] = c when c 6= a.

0[b/a] = 0
(τ.p)[b/a] = τ.(p[b/a])

(cd.p)[b/a] = c[b/a]d[b/a].p[b/a]
(c(d).p)[b/a] = c[b/a](d).(p[b/a])) with d 6= a, d 6= b
(c(a).p)[b/a] = c[b/a](a).p

(νc.p)[b/a] = νc.(p[b/a]) with c 6= a, c 6= b
(νa.p)[b/a] = νa.p

(p+ q)[b/a] = p[b/a] + q[b/a]
(p || q)[b/a] = p[b/a] || q[b/a]

(!p)[b/a] = !(p[b/a])
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We also recall that α-equivalence is defined in the π-calculus as the least con-
gruence ≡ over π-calculus terms such that

– if c 6∈ fn(p) then a(b).p ≡ a(c).(p[c/b]) and
– if b 6∈ fn(p) then νa.p ≡ νb.(p[b/a]).

As in the λ-calculus, α-equivalent terms are considered syntactically equal in the
π-calculus and the substitution operation defined above is total up to ≡.

D Proof of Theorem 2

Let T be a NTSS. Consider a closed term t over the signature of T and an atoms
a, b. We prove the two implications in the statement of Theorem 2 separately.

If t
a
A7→b−→ t′ then t′ = t[b/a]. Suppose that t

a
A7→b−→ t′. We prove that t′ = t[b/a] by

induction on the proof of the transition t
a
A7→b−→ t′. We proceed by a case analysis

on the last rule used in the proof of that transition and consider explicitly only
three selected cases.

– Case t = a
a
A7→b−→ b = t′ by rule (a1As) in Figure 1 on page 11. In this case,

t′ = a[b/a] and we are done.

– Case t = [c]u
a
A7→b−→ [c]u′ = t′ by rule (abs1As) because, by a shorter inference,

u
a
A7→b−→ u′, c 6= a and c 6= b. In this case, the induction hypothesis yields

u′ = u[b/a]. Since c 6= a and c 6= b, we have that

t[b/a] = ([c]u)[b/a] = [c](u[b/a]) = [c]u′ = t′,

and we are done.

– Case t = f(t1, . . . , tn)
a
A7→b−→ f(t′1, . . . , t

′
n) = t′ by rule (fAs) because, by shorter

inferences, ti
a
A7→b−→ t′i for each 1 ≤ i ≤ n. By the inductive hypothesis, we have

that t′i = ti[b/a] for each 1 ≤ i ≤ n. So, t′ = f(t1[b/a], . . . , tn[b/a]) = t[b/a],
which was to be shown.

If t′ = t[b/a] then t
a
A7→b−→ t′. This implication can be shown by induction on

the structure of t. The details are similar to those of the above-given proof and
therefore we omit them.

E Proof of Theorem 4: Operational correspondence for
the lazy λ-calculus

The encoding J·Kλ is the map from Λ into terms of the nominal λ-calculus defined
in Section 5.1, which we repeat here for ease of reference.
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JaKλ = a
Jλa.MKλ = λ([a]JMKλ)
JMNKλ = JMKλJNKλ

In the remainder of this section, we use ≡ to denote syntactic equality up to
α-equivalence of the lazy λ-calculus.

Our proof of Theorem 4 relies on the following lemmas, stating the correctness
of α-conversion and substitution transitions for the λ-calculus.

Lemma 4 (Correctness of α-conversion transitions).

– For all M,N ∈ Λ, if M ≡ N then JMKλ ≈α JNKλ.
– For all M ∈ Λ and N ′ ∈ C(Σλ), if JMKλ ≈α N ′ then there exists some
N ∈ Λ such that M ≡ N and JNKλ = N ′.

Lemma 5 (Correctness of substitution transitions). For all M,N ∈ Λ,
atom a and M ′ ∈ C(Σλ), the following statements hold.

– If JMKλ
a
T7→JNKλ−→ M ′ then M ′ = JM ′′Kλ for some M ′′ ≡M [N/a].

– If M [N/a] ≡M ′ then JMKλ
a
T7→JNKλ−→ JM ′Kλ.

The proofs of Lemmas 4 and 5 are lengthy and can be found in Appendix E.1.
We show the two implications in the statement of Theorem 4 separately.

Proof of the left-to-right implication: if M→N then JMKλ→ JNKλ. We show the
above statement by induction on the length of the proofs of provable transitions
in the original λ-calculus. We proceed by a case analysis on the last rule used in
the proof of the transition M→N . Recall that λ-calculus terms are considered
up to α-equivalence.

– Suppose that M ≡ λa.M ′→λa.M ′ ≡ N has been shown with rule (absO),
for some M ′. By the definition of J·Kλ, we have that Jλa.M ′Kλ = λ([a]JM ′Kλ).
By means of rule (abs) we can prove the transition

λ([a]JM ′Kλ)→λ([a]JM ′Kλ).

Observe now that JMKλ ≈α λ([a]JM ′Kλ) and λ([a]JM ′Kλ) ≈α JNKλ both
hold, by Lemma 4 and the definition of J·Kλ. Since the transition relation →
over C(Σλ) is up to α-equivalence, we have that JMKλ→ JNKλ and we are
done.

– Suppose that M→N has been shown with rule (appO) because, for some
closed terms M1, M2 and M3,

• M ≡M1 M2,
• M1→λa.M3 and
• M3[M2/a]→N .
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By Lemma 5, we have that

JM3Kλ
a
T7→JM2Kλ−→ JM3[M2/a]Kλ.

The inductive hypothesis and the definition of J·Kλ yield that

JM1Kλ→ Jλa.M3Kλ = λ([a]JM3Kλ)

and
JM3[M2/a]Kλ→ JNKλ.

We can therefore use rule (app) in order to prove the transition

JM1 M2Kλ→ JNKλ.

By Lemma 4, JMKλ ≈α JM1 M2Kλ. Since the transition relation → over
C(Σλ) is up to α-equivalence, we have that JMKλ→ JNKλ and we are done.

Proof of the right-to-left implication: if JMKλ→N then M→N ′ and JN ′Kλ = N ,
for some term N ′. We show the above statement by induction on the length of
the proof of the transition JMKλ→N . We proceed by a case analysis on the last
rule used in the proof.

– Suppose that JMKλ→N has been shown using rule (abs). By the definition
of J·Kλ, this means that M is λa.M ′ for some M ′ and that N = JMKλ =
λ([a]JM ′Kλ). By rule (absO), we have that M→M and we are done.

– Suppose that JMKλ→N has been shown using rule (app). By the definition
of J·Kλ, this means that M is M1M2 for some M1,M2 ∈ Λ and that the
following transitions are provable by shorter inferences:
1. JM1Kλ→λ([a]M ′1), for some M ′1,

2. M ′1
a7→JM2Kλ−→ M3 and

3. M3→N .
Our aim is to make use of the rule (appO) in order to prove a transition
M1M2→N ′ for some N ′ such that JN ′Kλ = N . To this end, observe, first
of all, that the inductive hypothesis applied to item 1 above yields that
M1→N1 for some N1 such that JN1Kλ = λ([a]M ′1). By the definition of J·Kλ,
N1 is λa.N ′1 for some N ′1 such that JN ′1Kλ = M ′1. So, we can rephrase the
second item above thus:

JN ′1K
λ a 7→JM2Kλ−→ M3.

By Lemma 5, we have that there is some M ′3 such that M ′3 ≡ N ′1[M2/a] and
M3 = JM ′3Kλ. Therefore we may apply the inductive hypothesis to item 3
above and the fact that λ-terms are considered equal up to ≡ to obtain that
N ′1[M2/a]→N ′ for some N ′ such that JN ′Kλ = N .
In summary, we have that
• M is M1M2 for some M1,M2 ∈ Λ,
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• M1→λa.N ′1 for some N ′1 and
• N ′1[M2/a]→N ′ for some N ′ such that JN ′Kλ = N .

We can now use rule (appO) to infer that M1M2→N ′ and we are done.
– Suppose that JMKλ→N has been shown using rule (〈〉 ·upToα). This means

that, for some terms M1 and M2,
• JMKλ ≈α M1,
• M1→M2 and
• M2 ≈α N .

By Lemma 4, the first item above yields that there exists some M ′1 ∈ Λ
such that M ≡ M ′1 and JM ′1Kλ = M1. We may therefore use the inductive
hypothesis to infer that M ′1→M ′2 for some M ′2 such that JM ′2Kλ = M2. Using
Lemma 4 again and the third item above, we have that there exists some
N ′ ∈ Λ such that M ′2 ≡ N ′ and JN ′Kλ = N . In summary,

M ≡M ′1→M ′2 ≡ N ′ and JN ′Kλ = N.

Since terms in the λ-calculus are considered up to ≡, it follows that M→N ′

and we are done.

E.1 Proof of Lemmas 4 and 5

The following lemma will be useful in the remainder of this section.

Lemma 6. Given an atom a and a λ-term M , a#JMKλ if, and only if, a is
fresh in M (that is, a 6∈ FV (M)).

The size of a term M ∈ Λ, denoted by |M |, is its length in symbols. In some
of the inductive proofs to follow, we will use the two simple, but important,
properties of the size of terms mentioned below.

Lemma 7.

1. For all M,N ∈ Λ, if M ≡ N then |M | = |N |.
2. For all M ∈ Λ and atoms a, b, the terms M and M [b/a] have the same size.

Since the rules defining ≈α rely on the transition relation axiomatizing atom-
for-atom substitutions, we prove the statements in Lemmas 4 simultaneously
with two auxiliary results stating the correctness of atom-for-atom substitution
transitions. For the sake of clarity, we summarize the four statements we prove
simultaneously below.

Lemma 8.

1. For all M,N ∈ Λ, if M ≡ N then JMKλ ≈α JNKλ.
2. For all M ∈ Λ and N ′ ∈ C(Σλ), if JMKλ ≈α N ′ then there exists some

N ∈ Λ such that M ≡ N and JNKλ = N ′.

3. For all M ∈ Λ, atoms a, b and M ′ ∈ C(Σλ), if JMKλ a
A7→b−→ M ′ then there

exists some N ∈ Λ such that M [b/a] ≡ N and M ′ = JNKλ.
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4. For all M,N ∈ Λ and atoms a, b, if M [b/a] ≡ N then JMKλ a
A7→b−→ JNKλ.

Proof. We prove all the statements in the lemma simultaneously by induction on
the size of M . We assume, as our induction hypothesis, that the four statements
above hold for all λ-terms of size strictly smaller than n and we prove them for
terms of size n. In the remainder of the proof, we write in, i ∈ {1, 2, 3, 4}, for
statement i for terms of size n and establish each of these claims in turn.

Proof of statement 1n. We proceed by an inner induction on the proof of M ≡ N ,
where M is a λ-term of size n, and a case analysis on the last rule used in such a
proof. We limit ourselves to presenting the details of the proof for three selected
cases. The others can be shown following similar lines.

– Assume that M ≡ N has been shown using transitivity because M ≡ M ′

and M ′ ≡ N , for some M ′, by shorter inferences. Since |M | = |M ′|, we may
use the inner inductive hypothesis twice to obtain that JMKλ ≈α JM ′Kλ and
JM ′Kλ ≈α JNKλ. Since ≈α is transitive (Lemma 3), we may conclude that
JMKλ ≈α JNKλ, and we are done.

– Assume that M = λa.M ′, N = λa.N ′ and M ′ ≡ N ′ by a shorter inference.
By the inductive hypothesis, JM ′Kλ ≈α JN ′Kλ. Since ≈α is a congruence
(Lemma 3), we have that

JMKλ = λ([a]JM ′Kλ) ≈α λ([a]JN ′Kλ) = JNKλ,

and we are done.
– Assume that M = λa.M ′, N = λb.(M ′[b/a]) and b 6∈ FV (M ′). Since |M ′| <
|M | = n, we may use the inductive hypothesis for statement 4 to infer that

JM ′Kλ a
A7→b−→ JM ′[b/a]Kλ.

As b 6∈ FV (M ′), we also have that b#JM ′Kλ by Lemma 6. Thus, using rule
(abs1α) in Figure 2 on page 14,

[a]JM ′Kλ ≈α [b]JM ′[b/a]Kλ.

Using the definition of J·Kλ and the substitutivity of ≈α , it follows that
JMKλ ≈α JNKλ.

Proof of statement 2n. We proceed by an inner induction on the proof of
JMKλ ≈α N ′, where M is a λ-term of size n, and a case analysis on the last
rule used in such a proof. We limit ourselves to presenting the details of the
proof for some selected cases. The others can be shown following similar lines.

– Assume that JMKλ ≈α N ′ because
• M = λa.M1, and thus JMKλ = λ([a]JM1Kλ),
• N ′ = λ([a]N ′1), for some N ′1, and
• JM1Kλ ≈α N ′1 by shorter inference.
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Since |M1| < |M | = n, we may use the inductive hypothesis to infer that
there is some N1 ∈ Λ such that JN1Kλ = N ′1 and M1 ≡ N1. Let N = λa.N1.
Then M ≡ N and JNKλ = N ′ both hold, and we are done.

– Assume that JMKλ ≈α N ′ because
• M = λa.M1, and thus JMKλ = λ([a]JM1Kλ),

• N ′ = λ([b]N ′1), for some N ′1 and b such that b#JM1Kλ and JM1Kλ
a
A7→b−→ N ′1.

Since |M1| < |M | = n, we may apply the inductive hypothesis for state-
ment 3 to infer that there is some N1 such that N1 ≡M1[b/a] and JN1Kλ =
N ′1. Let N = λb.N1. As b#JM1Kλ, we also have that b 6∈ FV (M1) by
Lemma 6. Therefore,

M = λa.M1 ≡ λb.(M1[b/a]) ≡ λb.N1 = N.

Moreover, JNKλ = N ′ and we are done.
– Assume that JMKλ ≈α N ′ has been derived using transitivity because, by

shorter inferences, JMKλ ≈α N ′1 and N ′1 ≈α N ′ for some N ′1. By the inner
inductive hypothesis, we have that there is some N1 ∈ Λ such that JN1Kλ =
N ′1 and M ≡ N1. Since |N1| = |M | = n, we again may apply the inner
inductive hypothesis to obtain that there is someN ∈ Λ such that JNKλ = N ′

and N1 ≡ N . By the transitivity of ≡, we may now infer that M ≡ N and
we are done.

Proof of statement 3n. We proceed by an inner induction on the proof of

JMKλ a
A7→b−→ M ′, where M is a λ-term of size n, and a case analysis on the last

rule used in the proof. We limit ourselves to presenting the details of the proof
for some selected cases. The others can be shown following similar lines.

– Assume that M = λc.M1 for some M1 and some atom c such that c 6= a

and c 6= b. Then JMKλ = λ([c]JM1Kλ)
a
A7→b−→ M ′ has been derived using the

instance of rule (fAs) for the function symbol λ in Figure 1 on page 11. This
means that, for some M ′1,
• M ′ = λ([c]M ′1) and

• [c]JM1Kλ
a
A7→b−→ [c]M ′1.

Since c 6= a, the transition [c]JM1Kλ
a
A7→b−→ [c]M ′1 has been derived using rule

(abs1As) in Figure 1. This means that, by a shorter inference, JM1Kλ
a
A7→b−→ M ′1.

By induction, there is some N ′1 such that N ′1 ≡ M1[b/a] and JN ′1Kλ = M ′1.
Let N = λc.N ′1. Then, as c 6= a and c 6= b,

M [b/a] = λc.(M1[b/a]) ≡ λc.N ′1 = N.

Moreover, JNKλ = M ′ and we are done.

– Assume that JMKλ a
A7→b−→ M ′ has been derived using the rule for transitions

up to α-equivalence given in Definition 14 on page 15. This means that
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JMKλ ≈α N1
a
A7→b−→ N2 ≈α M ′ for some N1 and N2, where the proof of

N1
a
A7→b−→ N2 is shorter than the proof of JMKλ a

A7→b−→ M ′. Since |M | = n and we
have already shown statement 2n, we can infer that there is some N ′1 such
that M ≡ N ′1 and JN ′1Kλ = N1. As |N ′1| = |M | = n, we may now apply the

inner inductive hypothesis to JN ′1Kλ = N1
a
A7→b−→ N2 to derive that there is

some N ′2 such that JN ′2Kλ = N2 and N ′2 ≡ N ′1[b/a]. Observe now that

|N ′2| = |N ′1[b/a]| = |N ′1| = |M | = n.

Therefore, we may again use statement 2n to infer that there is some N ′

such that N ′ ≡ N ′2 and JN ′Kλ = M ′. In summary, as M ≡ N ′1, we have that

M [b/a] ≡ N ′1[b/a] ≡ N ′2 ≡ N ′,

and, using transitivity of ≡, we are done.

Proof of statement 4n. We prove the claim in the following steps, where M is a
λ-term of size n.

1. If M [b/a] is defined (without any need for α-conversion) then JMKλ a
A7→b−→

JM [b/a]Kλ.
2. If M ≡M ′ and M ′[b/a] is defined (without any need for α-conversion) then

JMKλ a
A7→b−→ JM [b/a]Kλ.

3. If N ≡M [b/a] then JMKλ a
A7→b−→ JNKλ.

The first item above is shown by an inner induction on the structure of M .
The details are similar to those for the proof of statement 3n and are therefore
omitted. To prove the second claim, one uses 1n (twice), the first item and the
rule for transitions up to α-equivalence given in Definition 14 on page 15. The
third claim follows using 1n, the second item and the rule for transitions up to
α-equivalence given in Definition 14 on page 15. �

We now prove the two implications in the statement of Lemma 5, namely

– If JMKλ
a
T7→JNKλ−→ M ′ then M ′ = JM ′′Kλ for some M ′′ ≡M [N/a].

– If M [N/a] ≡M ′ then JMKλ
a
T7→JNKλ−→ JM ′Kλ.

Proof of the statement: If JMKλ
a
T7→JNKλ−→ M ′ then M ′ = JM ′′Kλ for some M ′′ ≡

M [N/a]. We show the claim by induction on the proof of the transition

JMKλ
a
T7→JNKλ−→ M ′.

We proceed by a case analysis on the last rule used in the proof and limit
ourselves to presenting the details for two selected cases. The other cases are
proved in similar fashion.
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– Assume that M = λc.M1 for some M1 and some atom c. Then

JMKλ = λ([c]JM1Kλ)
a
T7→JNKλ−→ M ′

has been shown using rule (λTs) in Figure 3 on page 17. This means that,
for some M ′1,

• M ′ = λ([c]M ′1) and

• [c]JM1Kλ
a
T7→JNKλ−→ [c]M ′1.

If c = a then the above transition has been derived using rule (abs2Ts). This
means that M ′ = JMKλ. Since M = M [N/a], we are done.

Assume now that c 6= a. In this case, the transition [c]JM1Kλ
a
T7→JNKλ−→ [c]M ′1

has been derived using rule (abs1Ts) in Figure 3. This means that c#JNKλ

and, by a shorter inference, JM1Kλ
a
T7→JNKλ−→ M ′1. By induction, there is some

M ′′1 such that M ′′1 ≡ M1[N/a] and JM ′′1 Kλ = M ′1. Let M ′′ = λc.M ′′1 . Then,
as c 6= a and c 6∈ FV (N) by Lemma 6,

M [N/a] = λc.(M1[N/a]) ≡ λc.M ′′1 = M ′′.

Moreover, JM ′′Kλ = M ′ and we are done.

– Assume that JMKλ
a
T7→JNKλ−→ M ′ has been derived using the rule for transitions

up to α-equivalence given in Definition 14 on page 15. This means that

JMKλ ≈α N1
a
T7→JNKλ−→ N2 ≈α M ′ for some N1 and N2, where the proof of

N1
a
T7→JNKλ−→ N2 is shorter than the proof of JMKλ

a
T7→JNKλ−→ M ′. By Lemma 4,

we can infer that there is some N ′1 such that M ≡ N ′1 and JN ′1Kλ = N1. We

may therefore apply the inductive hypothesis to JN ′1Kλ = N1
a
T7→JN ′

1Kλ−→ N2

to derive that there is some N ′2 such that JN ′2Kλ = N2 and N ′2 ≡ N ′1[N/a].
Now, we may again use Lemma 4 to infer that there is some M ′′ such that
M ′′ ≡ N ′2 and JM ′′Kλ = M ′. In summary, as M ≡ N ′1, we have that

M [N/a] ≡ N ′1[N/a] ≡ N ′2 ≡M ′′,

and, using transitivity of ≡, we are done.

Proof of the statement: If M [N/a] ≡ M ′ then JMKλ
a
T7→JNKλ−→ JM ′Kλ. We prove

the claim in the following steps, where M and N are λ-terms.

1. If M [b/a] is defined (without any need for α-conversion) then JMKλ
a
T7→JNKλ−→

JM [N/a]Kλ.
2. If M ≡M ′ and M ′[N/a] is defined (without any need for α-conversion) then

JMKλ
a
T7→JNKλ−→ JM [N/a]Kλ.
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3. If M ′ ≡M [N/a] then JMKλ
a
T7→JNKλ−→ JM ′Kλ.

The first item above is shown by induction on the structure of M . The details
are similar to those for the proof of the previous statement and are therefore
omitted. To prove the second claim, one uses Lemma 4, the first item and the
rule for transitions up to α-equivalence given in Definition 14 on page 15. The
third claim follows using Lemma 4, the second item and the rule for transitions
up to α-equivalence given in Definition 14 on page 15.

F Proof of Theorem 5

For ease of reference, we recall that the encoding J·Kπ is the map from Π into
terms of the nominal early π-calculus defined in Section 5.2 as follows.

J0Kπ = 0
Jτ.P Kπ = τ.JP Kπ

Jab.P Kπ = out(a, b, JP Kπ)
Ja(b).P Kπ = in(a, [b]JP Kπ)
Jνa.P Kπ = ν([a]JP Kπ)

JP +QKπ = JP Kπ + JQKπ
JP ||QKπ = JP Kπ ||JQKπ

J!P Kπ = !JP Kπ

The encoding is extended to labels thus:

JτKπ = τ,
JabKπ = in(a, b),
JabKπ = out(a, b) and

Ja(b)Kπ = bout(a, [b]).

Our proof of Theorem 5 relies on the following lemmas, stating the correctness
of substitution and α-conversion transitions.

Lemma 9 (Correctness of substitution transitions). For all P ∈ Π, atoms
a and b and P ′ ∈ C(Σπ), it holds that

JP Kπ a7→b−→ P ′ if and only if P ′ = JP [b/a]Kπ.

We use ≡ to denote syntactic equality up to α-equivalence of the early π-
calculus.

Lemma 10 (Correctness of α-conversion transitions).

– ⇒: For all P ∈ Π and Q′ ∈ C(Σπ), if JP Kπ ≈α Q′ then there exists Q ∈ Π
such that P ≡ Q ∧ JQKπ = Q′.

– ⇐: For all P,Q ∈ Π, if P ≡ Q then JP Kπ ≈α JQKπ.
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The proofs of Lemmas 9 and 10 are lengthy even though they follow stan-
dard reasoning by induction. They can be found in Section G and Section H,
respectively.

For ease of reference, we repeat below the rules for the early π-calculus given
in [48]10. In the rules that follow, names(α) denotes the set of names that occur
in the label α, bn(α) denotes the set of bound names that occur in the label α
and fn(P ) denotes the set of names of the process P that are not bound, see [48].
For completeness of reference, the definition of these sets are repeated in Section
C. Although these notions are standard, Section C also repeats the definitions
of substitution and α-equivalence of π-calculus.

(τO)
τ.x

τ→x
(outO)

ab.x
ab→x

(inO)
a(b).x

ac→ y[c/b]

x1
α→ y1

(sumO1)
x1 + x2

α→ y1
bn(α) ∩ fn(x2) = ∅

x1
α→ y1

(parO1)
x1 ||x2

α→ y1 ||x2

x1
ab→ y1 x2

ab→ y2
(comO1)

x1 ||x2
τ→ y1 || y2

b 6∈ fn(x2)
x1

a(b)→ y1 x2
ab→ y2

(closeO1)
x1 ||x2

τ→ νb.(y1 || y2)

x
α→ y

(replO)
!x

α→ y ||!x

a 6= z
x
za→ y

(openO)

νa.x
z(a)→ y

c 6∈ names(α)
x
α→ y

(resO)
νc.x

α→ νc.x

For the sake of brevity, we omit the symmetric versions of rules (sumO1),
(parO1), (parResO1), (comO1) and (closeO1). In what follows, these are referred
to as (sumO2), (parO2), (parResO2), (comO2) and (closeO2).

The proof of Theorem 5 is divided into two cases

– ⇒: if P
α→Q then JP Kπ

JαKπ→ JQKπ

– ⇐: if JP Kπ α→Q then P
α′

→Q′ for some α′ and Q′ such that Jα′Kπ = α and
JQ′Kπ = Q

We recall that in the statement for ⇐ the label α does not range over sub-
stitution and α-conversion transition labels.

The following lemmas will be necessary to complete the proof. Their proofs
are straightforward and thus omitted.

10 [48] presents more rules for the replication operator for technical reasons we are not
concerned with, see pages 42 and 43 in that reference.
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Lemma 11 (Interplay between the set of names and freshness (1).).
Given a channel name a and a π-calculus label α, it holds that if a 6∈ names(α)
then a 6∈ bn(JαKπ) and the freshness assertion a#JαKπ is derivable.

Lemma 12 (Interplay between the set of names and freshness (2).).
Given a channel name a and a π-calculus label α. Let α′ be a label such that
α′ = JαKπ. It holds that if a 6∈ bn(JαKπ) and a#JαKπ, then a 6∈ names(α).

Lemma 13 (Freshness in terms and their encodings.). Given a channel
name a and a π-calculus process P . a is fresh in JP Kπ if and only if a 6∈ fn(P ).

⇒
The proof is by induction on the derivation of the π-calculus transition. We

proceed by a case analysis on the last rule used in the derivation.

– τ.P : The only possible transition is τ.P
τ→P . Now Jτ.P Kπ = τ.JP Kπ, and by

rule (τ) we can prove the transition τ.JP Kπ τ→ JP Kπ.

– ab.P : The only possible transition is ab.P
ab→P . Now, Jab.P Kπ = out(a, b, JP Kπ),

and by rule (out), we can prove the transition out(a, b, JP Kπ)
out(a,b)→ JP Kπ.

– a(b).P : The possible transitions are with labels ac for all atoms c. Let us

pick an atom c and consider a transition a(b).P
ac→P [c/b]. Now, Ja(b).P Kπ =

in(a, [b]JP Kπ). By Lemma 9, which states the correctness of substitution

transitions, we know that JP Kπ a 7→c−→ JP [c/a]Kπ, thus we can use rule (in) to

prove the transition in(a, [b]JP Kπ)
in(a,c)→ JP [c/a]Kπ.

– νb.P : Let us recall the fact that Jνb.P Kπ = ν([b]JP Kπ). There are two possible
transitions.

• νb.P a(b)→ P ′ by rule (openO), with P
ab→P ′ and b 6= a. By the inductive

hypothesis JP Kπ
out(a,b)→ JP ′Kπ, thus the premise in rule (open) is satisfied,

and we can use this rule to prove a transition ν([b]JP Kπ)
bout(a,[b])→ JP ′Kπ.

• νb.P α→ νb.P ′ by rule (resO), with P
α→P ′ and for a generic α such that

b 6∈ names(α). By inductive hypothesis JP Kπ α→ JP ′Kπ. By Lemma 11,
since b 6∈ names(α) we have that b 6∈ bn(JαKπ) and b#JαKπ, thus the
premises in rule (res) are satisfied, and we can instanciate this rule in
the following way

b 6∈ bn(α)
JP Kπ α→ JP ′Kπ b#α

(res)
ν([b]JP Kπ)

α→ ν([b]JP ′Kπ)

to prove a transition ν([b]JP Kπ)
α→ ν([b]JP ′Kπ), whose target is exactly

Jνb.P ′Kπ.
– P + Q: Consider a generic transition α. There are two possible transitions,

(1) P + Q
α→P ′, with P

α→P ′ and (2) P + Q
α→Q′, with Q

α→Q′. We here

consider only (1). Now, JP +QKπ = JP Kπ+JQKπ. Since P
α→P ′, by inductive

hypothesis JP Kπ α→ JP ′Kπ, thus the premise in rule (sum1) is satisfied, and
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we can use this rule to prove a transition JP Kπ + JQKπ α→ JP ′Kπ. Case (2) can
be proven analogously.

– P ||Q: Then JP ||QKπ = JP Kπ ||JQKπ. We distinguish four cases.
• α 6∈ {bout(a, [b]) | a, b ∈ C}: There are two possible transitions, (1)

P ||Q α→P ′ ||Q, with P
α→P ′ and (2) P ||Q α→P ||Q′, with Q

α→Q′. (We
treat below separately the case for α = τ with a top level communication
taking place). We here consider only (1). Now, JP ||QKπ = JP Kπ ||JQKπ.

Since P
α→P ′, by inductive hypothesis JP Kπ α→ JP ′Kπ, thus the premise

in rule (par1) is satisfied, and we can use this rule to prove a transition

JP Kπ ||JQKπ α→ JP ′Kπ ||JQKπ, whose target is exactly JP ′ ||QKπ. Case (2)
can be proven analogously.
• α ∈ {bout(a, [b]) | a, b ∈ C}: The only possible transition is, by rule

(parO1), P ||Q bout(a,[b])→ P ′ ||Q, with P
bout(a,[b])→ P ′ and b 6∈ fn(Q). Since

P
α→P ′, by inductive hypothesis JP Kπ

bout(a,[b])→ JP ′Kπ. Moreover, since
b 6∈ fn(Q), by Lemma 13 we have that b#JQKπ. The two premises of
rules (par1) are therefore satisfied, and we can use this rule to prove a

transitionJP Kπ ||JQKπ
bout(a,[b])→ JP ′Kπ ||JQKπ, whose target is exactly JP ′ ||QKπ.

• Assume that P ||Q τ→P ′ ||Q′ by rule (comO1), with P
ab→P ′ and Q

ab→Q′

for some atoms a and b. Since P
ab→P ′ and Q

ab→Q′, by the inductive

hypothesis JP Kπ
out(a,b)→ JP ′Kπ and JQKπ

in(a,b)→ JQ′Kπ, thus the premises in
rule (com1) are satisfied, and we can use this rule to prove a transition

JP Kπ ||JQKπ τ→ JP ′Kπ ||JQ′Kπ, whose target is exactly JP ′ ||Q′Kπ.

• Assume that P ||Q τ→ νb.(P ′ ||Q′) by rule (closeO1), with P
a(b)→ P ′ and

Q
ab→Q′ for some atoms a and b, with b 6∈ fn(Q). Now, since P

a(b)→ P ′ and

Q
ab→Q′, by the inductive hypothesis JP Kπ

bout(a,[b])→ JP ′Kπ and JQKπ
in(a)(b)→ JQ′Kπ.

The premises of rule (close1) are all satisfied and we can use this rule

to prove a transition JP Kπ ||JQKπ τ→ ν([b](JP ′Kπ ||JQ′Kπ)), whose target is
exactly Jνb.(P ′ ||Q′)Kπ.

– !P : Assume that !P
α→P ′ ||!P , with P

α→P ′. Now, J!P Kπ =!JP Kπ. Since P
α→P ′,

by the inductive hypothesis JP Kπ α→ JP ′Kπ. Thus the premise in rule (repl) is

satisfied, and we can use this rule to prove a transition !JP Kπ α→ JP ′Kπ ||!JP Kπ,
whose target is exactly JP ′ ||!P Kπ.

⇐
The proof is by induction on the structure of the π-term P and then by cases

on the last rule used in the derivation of the transition JP Kπ α→Q.

– 0: J0Kπ = 0. Since α does not range over substitution and α-conversion
labels, this case is vacuous.

– τ.P : Jτ.P Kπ = τ.JP Kπ. The only transition is τ.JP Kπ τ→ JP Kπ by rule (τ). In

this case, τ.P
τ→P with JτKπ = τ , and we are done.

57



– ab.P : Jab.P Kπ = out(a, b, JP Kπ). The only transition is out(a, b, JP Kπ)
out(a,b)→ JP Kπ,

by rule (out). In this case, ab.P
ab→P with JabKπ = out(a, b) and we are done.

– a(b).P : Ja(b).P Kπ = in(a, [b]JP Kπ). The only possible transitions have labels

of the form in(a, c). Let us pick an action in(a, c). Then in(a, [b]JP Kπ)
in(a,c)→ P ′,

by rule (in), with JP Kπ a7→c−→ P ′. By Lemma 9, which states the correct-
ness of substitution transitions, P ′ = JP [c/a]Kπ. Since JacKπ = in(a, c) and

ab.P
ac→P [c/a] we are done.

– νb.P : Jνa.P Kπ = ν([a]JP Kπ). There are two possible transitions.

• ν([b]JP Kπ)
bout(a,[b])→ P ′ by rule (open), with JP Kπ

out(a,b)→ P ′ and a 6= b. By

the inductive hypothesis JP ′Kπ = P ′′ and P
ab→P ′′ for some P ′′. We can

now use the rule (open) in order to prove a transition νb.P
a(b)→ P ′′ with

Ja(b)Kπ = bout(a, [b]) and we are done.

• ν([b]JP Kπ)
α→ ν([b]P ′)by rule (res), with JP Kπ α→P ′ and b 6∈ bn(α) and

b#α. By inductive hypothesis P
α′

→P ′′ for some P ′′ such that P ′ = JP ′′Kπ
and α = Jα′Kπ. By Lemma 12, since b 6∈ bn(α) and b#α then we have
that b 6∈ names(α′). We can thus use the rule (resO) in order to prove a

transition νb.P
α′

→ νb.P ′′ with α = Jα′Kπ and we are done.
– P + Q: JP + QKπ = JP Kπ + JQKπ. There are two possible transitions, (1)

JP Kπ+JQKπ α→P ′, by rule (sum1), with JP Kπ α→P ′, or (2) JP Kπ+JQKπ α→Q′,

by rule (sum2), with JQKπ α→Q′. Here we consider only transition (1). By

inductive hypothesis P
α′

→P ′′ for some P ′′ such that P ′ = JP ′′Kπ and α =

Jα′Kπ. We can thus prove a transition P + Q
α′

→P ′′, with P ′ = JP ′′Kπ and
α = Jα′Kπ. Case (2) can be proven analogously.

– P ||Q: JP ||QKπ = JP Kπ ||JQKπ. We distinguishes four cases:

• α 6∈ {a(b) | a, b ∈ C}: There are two possible transitions, (1) JP Kπ ||JQKπ α→P ′ ||Q,

by rule (par1), with JP Kπ α→P ′, or (2) JP Kπ ||JQKπ α→P ||Q′, by rule

(par2), with JQKπ α→Q′. (We treat below separately the case for α = τ
with a top level communication taking place). Here we consider only

transition (1). By inductive hypothesis P
α′

→P ′′ for some P ′′ such that

P ′ = JP ′′Kπ and α = Jα′Kπ. We can thus prove a transition P ||Q α′

→P ′′ ||Q,
whose target is exactly JP ′ ||QKπ and with α = Jα′Kπ. Case (2) can be
proven analogously.
• α = a(b): There are two possible transitions: (1) JP Kπ ||JQKπ α→P ′ ||Q,

by rule (parRes1), with JP Kπ
bout(a,[b])→ P ′ and b fresh in JQKπ, or (2)

JP Kπ ||JQKπ
bout(a,[b])→ P ||Q′, by rule (parRes2), with JQKπ

bout(a,[b])→ Q′ and
b fresh in JP Kπ, Here we consider only transition (1). By the induc-

tive hypothesis, P ′ = JP ′′Kπ and P
a(b)→ P ′′ for some P ′′. By Lemma 13,

since b is fresh in JQKπ we have that b 6∈ fn(Q). We can thus prove a

transition P ||Q a(b)→ P ′′ ||Q, whose target is exactly JP ′ ||QKπ, and with
Ja(b)Kπ = bout(a, [b]).
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• α = τ using (com1): JP Kπ ||JQKπ τ→P ′ ||Q′, with JP Kπ
out(a,b)→ P ′ and

JQKπ
in(a,b)→ Q′. By the inductive hypothesis, P ′ = JP ′′Kπand P

ab→P ′′ for

some P ′′, and also JQ′Kπ = Q′′ and Q
ab→Q′′ for some Q′′. We can thus

use the rule (comO1) in order to prove a transition P ||Q τ→P ′′ ||Q′′,
whose target is exactly JP ′ ||Q′Kπ, and with JτKπ = τ . When using the
rule (com2) the same reasoning applies.

• α = τ using (close1): JP Kπ ||JQKπ τ→ ν([b](P ′ ||Q′)), with JP Kπ
bout(a,[b])→ P ′,

JQKπ
in(a,b)→ Q′ and b fresh in both JP Kπ and JQKπ. By the inductive hy-

pothesis, P ′ = JP ′′Kπ and P
a(b)→ P ′′ for some P ′′, and also JQ′Kπ =

Q′′ and Q
ab→Q′′ for some Q′′. By Lemma 13, since b is fresh in JQKπ

we have that b 6∈ fn(Q). We can thus use the rule (closeO1) in or-

der to prove a transition P ||Q τ→ νb.(P ′′ ||Q′′), whose target is exactly
Jν([b](P ′ ||Q′))Kπ, and with JτKπ = τ . When using the rule (close2) the
same reasoning applies.

– !P : J!P Kπ =!JP Kπ. The only transition is !JP Kπ α→P ′ ||!JP Kπ, by rule (repl),

with JP Kπ α→P ′. By inductive hypothesis P
α′

→P ′′ for some P ′′ such that

P ′ = JP ′′Kπ and α = Jα′Kπ. We can thus prove a transition !P
α′

→P ′′ ||!P ,
whose target is exactly JP ′ ||!P Kπ, and with α = Jα′Kπ.

G Correctness of substitutions for π: Proof of Lemma 9

The proof of Lemma 9 is divided into two cases.

– ⇒: JP Kπ a
A7→b−→ JP [b/a]Kπ

– ⇐: if P [b/a] = P ′ then JP Kπ a
A7→b−→ JP ′Kπ

The reader must be aware of the fact that atom-for-atom substitutions are
up to α-equivalence and simultaneously that α-conversion transitions are de-
fined upon atom-for-atom substitutions. Proving Lemma 9 and Lemma 10, which
states the correctness of α-conversion transitions, separately results in a mutual
reference. The mutual reference is however harmless and we can proceed by prov-
ing the two lemmas together in a big induction on the sum of the lengths of the
proofs for substitution transitions and α-conversion transitions.

We however prefer to keep the main concepts of the proofs separate and
present the proof of Lemma 9 in a standalone fashion, as though we can safely
refer to Lemma 10. The reader should however always keep in mind how the
actual proof proceeds and that this is just for presentation sake.

⇒
Let us pick closed a π-term P and atoms a and b. The proof is by induction

on the length of the proof of transition
a
A7→b−→ from the encoding of the π-term P .
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– Proofs of length 1: The only proof of length 1 is with rule (0s) from the
encoding of the term 0. In fact, since the constant 0 has no parameters,
the rule (0s) turns out to be an axiom. We have that 0[b/a] = 0 and since

J0Kπ = 0 we can prove J0Kπ a
A7→b−→ J0Kπ by rule (0s).

– Proofs of length n > 1: There are different proofs of length n > 1 to consider.
In this proof we limit ourselves to show the cases for the π-terms of the
form τ.P , P ||Q and c(d).P . The proof cases for the other forms can be
subsumed by those. The case for the application of an α-conversion with the

rule
a
A7→b−→ ·upToα is also considered.

• (τs) from Jτ.P Kπ: We have that (τ.P )[b/a] = τ.(P [b/a]). We can instan-
tiate the rule (τs) as below.

JP Kπ a
A7→b−→ P ′

τ.JP Kπ a
A7→b−→ τ.P ′

Since the length of the proof for the transitions JP Kπ a
A7→b−→ P ′ is strictly

less than the length of the proof for τ.JP Kπ a
A7→b−→ τ.P ′, the inductive hy-

pothesis applies and we can conclude that P ′ = JP [b/a]Kπ. We therefore

have that τ.JP Kπ a
A7→b−→ τ.JP [b/a]Kπ, that is Jτ.P [b/a]Kπ.

• (||s) from JP ||QKπ: We have that (P ||Q)[b/a] = (P [b/a] ||Q[b/a]). We
can instantiate the rule (||s) as below.

JP Kπ a
A7→b−→ P ′ JQKπ a

A7→b−→ Q′

τ.JP ||QKπ a
A7→b−→ P ′ ||Q′

Since the length of the proofs for the transitions JP Kπ a
A7→b−→ P ′ and

JQKπ a
A7→b−→ Q′ are strictly less than the length of the proof for JP ||QKπ a

A7→b−→
P ′ ||Q′, the inductive hypothesis applies and we can conclude that P ′ =

JP [b/a]Kπ and Q′ = JQ[b/a]Kπ. We therefore have that JP ||QKπ a
A7→b−→

JP [b/a]Kπ ||JQ[b/a]Kπ, that is JP [b/a] ||Q[b/a]Kπ.

• (ins) from Jc(d).P Kπ:

∗ substitution (c(d).P )[a/d]: The atom c might be equal to d. We
have that (c(d).P )[a/d] = c[d/a](d).P . Recalling that Jc(d).P Kπ =
in(c, [d].JP Kπ), we can instantiate the rule (ins) as below.

c
a
A7→d−→ c[d/a] [d].JP Kπ a

A7→d−→ [d].JP Kπ

in(c, [d].JP Kπ)
a
A7→d−→ in(c[d/a], [d].JP Kπ)
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Where the transition d].JP Kπ a
A7→d−→ [d].JP Kπ is provable by means

of the axiom (abs2As). We therefore have that in(c, [d].JP Kπ)
a
A7→d−→

in(c[d/a], [d].JP Kπ), that is J(c(d).P )[a/d]Kπ.
∗ substitution (c(d).P )[b/a], with a 6= d and b fresh in P : The atom c

might be equal to a. We have that (c(d).P )[b/a] = c[[b/a](d).(P [b/a]).
Before instantiating the rule (ins) we can see how we can instantiate
the rule (abs1Ts) to suit our purposes. Let us consider the following
instantiation of (abs1Ts).

JP Kπ a
A7→b−→ P ′ b#JP Kπ a 6= d

[d].JP Kπ a
A7→b−→ [d].P ′

By Lemma 13, since b is fresh in P then b is fresh also in JP Kπ
and b#JP Kπ holds. Since the length of the proofs for the transi-

tion JP Kπ a
A7→b−→ P ′ is strictly less than the length of the proof for

[d].JP Kπ a
A7→b−→ [d].P ′, the inductive hypothesis applies and we can

conclude that P ′ = JP [b/a]Kπ. The transition proved above is thus

[d].JP Kπ a
A7→b−→ [d].JP [b/a]Kπ. Now we can instantiate the rule(ins) as

below.

c
a
A7→b−→ c[b/a] [d].JP Kπ a

A7→b−→ [d].JP [b/a]Kπ

in(c, [d].JP Kπ)
a
A7→b−→ in(c[b/a], [d].JP [b/a])Kπ

And we therefore prove Jc(d).P Kπ a
A7→b−→ J(c(d).P )[b/a]Kπ.

• a
A7→b−→ ·upToα from JP Kπ: We can instantiate the rule

a
A7→b−→ ·upToα as below.

JP Kπ ≈α P1 P1
a
A7→b−→ P2

JP Kπ a
A7→b−→ P2

Thanks to Lemma 10, which states the correctness of α-conversion tran-
sitions, we know that P1 is such that P1 = JP ′1Kπ for some P ′1 ≡ P . Since
in π-calculus terms are representative of the equivalence class induced
by α-equivalence, we have that P1 = JP Kπ. Now, since the length of the

proof for the transitions P1
a
A7→b−→ P2 is strictly less than the length of the

proof for the transition JP Kπ a
A7→b−→ P2 (the leave of the tree above), the

inductive hypothesis applies and we can conclude that P2 = J(P [b/a]Kπ.

We therefore have thatJP Kπ a
A7→b−→ J(P [b/a]Kπ
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⇐
The case ⇐ can be proved following the lines of the proof above.

H Correctness of α-conversions for π: Proof of Lemma 10

The proof of Lemma 10 is divided into two cases.

– ⇒: if JP Kπ ≈α Q′ then P ≡ Q ∧ JQKπ = Q′.
– ⇐: if P ≡ Q then JP Kπ ≈α JQKπ.

Where ≡ is the syntactic equality up to α-equivalence of the early π-calculus.
The reader must be aware of the fact that atom-for-atom substitutions are

up to α-equivalence and simultaneously that α-conversion transitions are defined
upon atom-for-atom substitutions. Proving Lemma 9, which states the correct-
ness of those substitutions transitions, and Lemma 10 separately results in a
mutual reference. The mutual reference is however harmless and we can proceed
by proving the two lemmas together in a big induction on the sum of the lengths
of the proofs for substitution transitions and α-conversion transitions.

We however prefer to keep the main concepts of the proofs separate and
present the proof of Lemma 10 in a standalone fashion, as though we can safely
refer to Lemma 9. The reader should however always keep in mind how the
actual proof proceeds and that this is just for presentation sake.

⇒
Assuming the hypothesis, let T be a NTSS . The proof is by induction on the

length of the proofs for α-conversion transitions.

– Proofs of length 1: The only provable transition with length 1 is by rule
(idα), JP Kπ ≈α JP Kπ. Indeed, by reflexivity of ≡, we have that P ≡ P .

– Proofs of length n: The rest of the proof proceed in as much the same way
as in Lemma 4. In what follows we thus show the proof only for one binder
of the ordinary π, namely the restriction νa.P , and one ordinary operator,
namely the parallel operator ||. The proofs regarding the other binder a(b).P ,
the other operators and the transitivity case are easy to carry out following
the same line employed in detail in the proof of Lemma 4.

• Jνa.P Kπ: There are two possible provable α-conversion transitions for
Jνa.P Kπ.
∗ Jνa.P Kπ ≈α ν([b]P ′), with b fresh in JP Kπ: Here we first prove [a]JP Kπ ≈α

[b]P ′ using rule (abs1α) and then ν([a]JP Kπ) ≈α ν([b]P ′) using the
rule (να). Rule (abs1α) can be instanciated in the following way

JP Kπ a
A7→b−→ P ′ b#JP Kπ

[a]JP Kπ ≈α [b]P ′

By Lemma 9, which states the correctness of substitution transitions,
we know that P ′ = JP [b/a]Kπ. The transition actually proved by the
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rule above is thus [a]JP Kπ ≈α [b]JP [b/a]Kπ. Now, we can instanciate
the rule (να) as follows

[a]JP Kπ ≈α [b]JP [b/a]Kπ

ν([a]JP Kπ) ≈α ν([b]JP [b/a]Kπ)

in order to prove ν([a]JP Kπ) ≈α ν([b]JP [b/a]Kπ). The statement of
the theorem holds in this case. Indeed, νa.P ≡ νb.P [b/a].

∗ Jνa.P Kπ ≈α ν([a]P ′): Here we address the case where we first prove
[a]JP Kπ ≈α [a]P ′ using rule (abs2α) and then ν([a]JP Kπ) ≈α ν([a]P ′)
using the rule (να). Rule (abs2α) can be instanciated in the following
way

JP Kπ ≈α P ′

[a]JP Kπ ≈α [a]P ′

Since the proof length for proving this transition is strictly less then
n, also the proof length for proving JP Kπ ≈α P ′ is strictly less then
n. By inductive hypothesis we can conclude that P ≡ P ′′, with
JP ′′Kπ = P ′. Now, we can instanciate the rule (να) as follows

[a]JP Kπ ≈α [a]JP ′′Kπ

ν([a]JP Kπ) ≈α ν([a]JP ′′Kπ

in order to prove ν([a]JP Kπ) ≈α ν([a]JP ′′Kπ. The statement of the
theorem holds in this case. Indeed, since ≡ is a congruence, we can
place equated terms in the same context, and since P ≡ P ′′ we have
that νa.P ≡ νa.P ′′.

• JP1Kπ ||JP2Kπ ≈α P ′1 ||P ′2 using rule (||α), with JP1Kπ ≈α P ′1 and JP2Kπ ≈α
P ′2: Since the proof length for proving these two mentioned transitions
is strictly less than n, by inductive hypothesis we can conclude that
P1 ≡ P ′′1 and P2 ≡ P ′′2 , with JP ′′1 Kπ = P ′1 and JP ′′2 Kπ = P ′2. As in the
previous case, since ≡ is a congruence, P1 ||P2 ≡ P ′′1 ||P ′′2 , with exactly
JP ′′1 ||P ′′2 Kπ = P ′1 ||P ′2.

⇐
The case ⇐ is proved along the line of the case ⇐ in proof of Theorem

3. Basically, the change of the bound variable in binders is simulated by rule
(abs1α), the reflexivity is given by rule (idα), the symmetry is inferred, and the
transitivity is given by the rule α ·upToα. Moreover, the reader can see that the
rules are such to share α-conversion transitions in any context, which simulates
the requirement for ≡ to be a congruence and not just an equivalence relation.

I Bisimilarity when ignoring substitution transitions:
Proof of Theorem 6

The proof is divided into two cases, given P and Q ∈ Π:
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1. Soundness: if P ↔–– Q then JP Kπ↔− JQKπ.

2. Completeness: if JP Kπ↔− JQKπ then P ↔–– Q.

Soundness: It suffices to show that the relation

R = {(JP Kπ, JQKπ) | P ↔–– Q}

satisfies the requirement for↔−, i.e., the ones in the definition of the nominal
bisimilarity (Definition 16) when we omit to consider substitution transitions.

To this end, notice first of all thatR is symmetric. Assume now that JP KπRJQKπ

and JP Kπ α→P ′. In our formulation of the early π-calculus, the action α′ may be
either (1) an ordinary action, (2) a substitution transition, or (3) an α-conversion
transition. Since ↔− omits to match substitution transitions, we only need to
tackle transitions of form (1) and (3).

Let us consider now the case (1). By Theorem 5, which states the operational
correctness of our formulation of π-calculus with respect to the original one, we

know that P
α′

→P ′′ for some P ′′ and α such that JP ′′Kπ = P ′ and Jα′Kπ = α.

Since P ↔–– Q, we have that Q
α′

→Q′′, with P ′′ ↔–– Q′′. By, again, Theorem 5,

we have that JQKπ
Jα′Kπ→ JQ′′Kπ, i.e. JQKπ α′

→ JQ′′Kπ. We have now to prove that
JP ′′KπRJQ′′Kπ. This follows easily from the fact that P ′′ ↔–– Q′′.

Let us now consider the case (3), namely the transition is an α-conversion
transition. Since JP Kπ ≈α P ′, by Lemma 10, which states the correctness of α-
conversion transitions, we know that P ≡ P ′′ and JP ′′Kπ = P ′. We now have to
show that JQKπ ≈α Q′ for some Q′ such that P ′RQ′. Since ≡⊂↔––, we have that
there exists a Q′′ such that Q ≡ Q′′ and it holds that P ′′ ↔–– Q′′. Since Q ≡ Q′′,
by Lemma 10 we have that JQKπ ≈α Q′, with JQ′′Kπ = Q′. We have now to
prove that JP ′′KπRJQ′′Kπ. This follows easily from the fact that P ′′ ↔–– Q′′.

Completeness: It suffices to show that the relation

R = {(P,Q) | JP Kπ↔− JQKπ}

is a bisimulation.

To this end, notice first of all that R is symmetric. Assume now that PRQ
and P

α→P ′. By Theorem 5, which states the operational correctness of our for-

mulation of π-calculus with respect to the original one, we know that JP Kπ
JαKπ→ JP ′Kπ.

Since JP Kπ ↔− JQKπ, we also have that JQKπ
JαKπ→ Q′′, for some Q′′ such that

JP ′Kπ ↔− Q′′, and by Theorem 5 we know that Q′′ is such that Q
α→Q′ with

JQ′Kπ = Q′′. We have now to prove that P ′RQ′. This follows easily from the
fact that JP ′Kπ↔− JQ′Kπ.
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J Open bisimilarity and Bisimilarity coincide: Proof of
Theorem 7

In this section we prove that what open bisimilarity does in the ordinary early
π-calculus is exactly what nominal bisimilarity does in our formulation of the
early π-calculus in the nominal SOS framework.

In order to prove this, we first define an equivalence relation over terms of
the ordinary π-calculus, we call it One-Step Open Bisimilarity. This equivalence
requires the ordinary bisimilarity, as recalled in Definition 15, to match also all
the ”single substitutions” performed from the processes to be equated. We prove
that the nominal bisimilarity in our formulation of π-calculus coincides with the
One-Step Open Bisimilarity. We then prove that the One-Step Open Bisimilarity
is another way to formulate the open bisimilarity of Definition 18. The statement
of Theorem 7 then easily follows.

Definition 21 (One-Step Open Bisimilarity) One-Step open bisimilarity↔1sO

is the largest symmetric relation ∼ between π-calculus processes such that when-
ever P ∼ Q,

1. for all actions α, if P
α→P ′, then there exists some Q′, such that Q

α→Q′ and
P ′ ∼ Q′;

2. for all channel names a and b, P [b/a] ∼ Q[b/a].

Theorem 14 (One-Step Open bisimilarity and Bisimilarity coincide).
For all P,Q ∈ Π, P ↔1sO Q if, and only if, JP Kπ ↔–– JQKπ.

The proof of this theorem is divided into two cases:

1. Soundness: if P ↔1sO Q then JP Kπ ↔–– JQKπ.
2. Completeness: if JP Kπ ↔–– JQKπ then P ↔1sO Q.

Soundness: It suffices to show that the relation

R = {(JP Kπ, JQKπ) | P ↔1sO Q}

is a nominal bisimulation.
To this end, notice first of all thatR is symmetric. Assume now that JP KπRJQKπ

and JP Kπ α→P ′. In our formulation, the label α can perform be (1) an ordinary ac-
tion, (2) a substitution transition, or (3) an α-conversion transition. For cases (1)
and (3) the exact reasoning employed for them in the proof of Theorem 6 applies.
It thus suffices considering the case (2), which is about substitution transitions.
In order to prove this, we rely on Lemma 9 which states the correctness of substi-

tution transitions, and prove that for all names a and b, JP Kπ a7→b−→ JP [b/a]Kπ and

JQKπ a7→b−→ JQ[b/a]Kπ, with JP [b/a]Kπ ↔–– JQ[b/a]Kπ. The reader can easily notice
that this follows immediately. Given atoms a and b, by Clause 2 of Definition 21
we know that P [b/a]↔1sO Q[b/a], thus JP [b/a]KπRJQ[b/a]Kπ.
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Completeness: It suffices to show that the relation

R = {(P,Q) | JP Kπ↔− JQKπ}

is a one-step open bisimulation.
To this end, notice first of all that R is symmetric. Assume now that PRQ.
Clause 1 of Definition 21 requires that P and Q would match transitions. For

this case the exact reasoning employed in the proof of Theorem 6 applies.
Clause 2 of Definition 21 concerns substitutions. We have to prove that for

all channel names a and b P [b/a]RQ[b/a]. Let us pick two names a and b, by
Lemma 9 which states the correctness of substitution transitions, we know that

JP Kπ a7→b−→ JP [b/a]Kπ and JQKπ a7→b−→ JQ[b/a]Kπ. Since JP Kπ ↔–– JQKπ we moreover
know that JP [b/a]Kπ ↔–– JQ[b/a]Kπ. Thus, we can conclude that P [b/a]RQ[b/a].

Theorem 15 (Open and One-Step Open bisimilarity coincide).
For all P,Q ∈ Π, P ↔o Q if, and only if, P ↔1sO Q.

Before embarking ourselves in the proof of Theorem 15, some preliminary
considerations are in order. The completeness part of the proof of Theorem 15
relies on the fact that we can faithfully simulate the substitutions involved in
the open bisimilarity, see Definition 17, by means of a sequence of substitutions
that replace only one name with another. However, it is to be noticed that the
substitutions of Definition 17 defines a mapping that replaces the names of a
process simultaneously. For this reason, these substitutions will be called from
now onwards simultaneous substitutions. The substitutions that replace only one
atom with another within a process will be referred to as one-step substitutions.

The reader must see that an encoding from simultaneous to one-step substi-
tutions cannot be provided naively. Consider for instance the term a.b.c11 and a
substitution σ which maps the name a to b12, b to c, c to a and is the identity
over all other atoms. The scenario we have is the following

(a.b.c)σ = b.c.a a.b.c[b/a][c/b][a/c] = a.a.a

The substitution σ indeed replaces names in the processes simultaneously.
This fact cannot be simulated naively by one-step substitutions because of
clashes of names in the terms. The unfolded procedure of the example above
is a.b.c[b/a] = b.b.c, b.b.c[c/b] = c.c.c, c.c.c[a/c] = a.a.a. In the encoding of si-
multaneous substitutions that we present, we are able to simulate substitutions
relying, not surprisingly, on freshness of atoms, which once again plays a crucial
role.

In order to ease the proof and its presentation, we adopt a convenient repre-
sentation of simultaneous substitutions. By Definition 17, we have that this type
of substitutions act only on a finite set of names, we can thus represent mappings

11 In order to make the example clear we consider the term a.b.c rather than a π-calculus
process.

12 When we say that σ maps a to b we mean σ(a) = b, i.e., the name a will be replaced
by b.
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as finite lists of substitutions {a/b}, with a and b names. For instance, the substi-
tution mapping a to b, c to d, e to f and that is the identity over all other names,
is represented as {a/b} · {c/d} · {e/f} · ε. Such a representation gives a clearer
and more immediate presentation. The symbol ε denotes the empty substitution
for both the types of substitution. The operation · denotes the composition for
simultaneous substitutions. For one-step substitution we write instead t[a/b][c/d]
as before. In what follows, we sometimes omit writing the substitution ε at the
end of a composition of simultaneous substitutions.

Despite the representation, the reader must keep in mind that a substitution
acts as a mapping and it performs simultaneous substitutions, as in the example
above.

In what follows, we say that a name a is fresh in a simultaneous substitution
σ if a does not appear in σ.

Since the correctness of the following encoding is built upon freshness of
names of the term the substitution is applied to, the encoding is parametrized
by a process P . Moreover, the encoding is parametrized also by an enumeration
Φ of names of π-calculus. Note that this is possible because the set of names is
countably infinite. The role of Φ will be make clear after the presentation of the
encoding.

Definition 22 (Encoding of simultaneous substitutions)

JεK(P,Φ) = ε
J{b/a} · σK(P,Φ) = [af/a]JσKP [af/a][b/af ]

Where the name af is such that Φ(n) = af for some n that is the least natural
number m such that Φ(m) = af and af is fresh in P and in {b/a} · σ.

In the encoding above P [af/a] is performed by the one-step substitution.

Remark on the enumeration. The encoding could simply pick a name af that
is fresh in P and in {b/a} · σ. However, this choice makes the encoding able to
produce different outputs depending on the choice of fresh names made at any
step, i.e., the encoding would not be a function. It is however convenient to avoid
the technicalities that arise with dealing with multiple encodings. To this aim,
we fix an enumeration of names and pick always the least suitable fresh name
(with the property stated in Definition 22). It is not hard to see that such a
suitable name always exists. The encoding J·K(P,Φ) is thus a function.

From now onwards, the choice of the enumeration Φ will always be irrelevant,
and we will just write JσKP mentioning only the parameter P .

For the sake of example, the encoding for the simultaneous substituton of the
previous example is J{b/a}·{c/b}·{a/c}K(a.b.c) = [af/a][bf/b][cf/c][a/cf ][c/bf ][b/af ].
The reader may want to see these six one-step substitutions applied to the term
a.b.c:

(1) a.b.c[af/a] = af .b.c (2) af .b.c[bf/b] = af .bf .c (3) af .bf .c[cf/c] = af .bf .cf
(4) af .bf .cf [a/cf ] = af .bf .a (5) af .bf .a[c/bf ] = af .c.a (6) af .c.a[b/af ] = b.c.a.
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The series of one-step substitutions ends up in the term b.c.a, as we expected.
This is not by chance, the following theorem proves that, thanks to the encoding
J·K, one-step substitutions are able to simulate simultaneous substitutions.

Multiple representations for simultaneous substitutions Before stating the theo-
rem, the reader must know that the mappings of Definition 17 allow for multiple
representations of simultaneous substitutions. For instance, the two substitu-
tions {a/b} · {c/d} · {e/f} and {a/b} · {e/f} · {c/d} represent the same mapping.
We equate all of these representations, and when refering to a simultaneous sub-
stitution σ, we actually refer to a representative representation of the class of all
the simultaneous substitutions which differs only by permutation of their single
substitutions. It is not hard to see that all of these equated representations lead
to the same term when applied to a process P .

Theorem 16 (Correctness of the encoding of simultaneous substitu-
tions).

For all processes P in Π, for all simultaneous substitutions σ, Pσ = P JσKP .

The proof of Theorem 16 can be found in Section K. Relying on Theorem
16, we proceed to prove Theorem 15. Before embarking on the proof, we state a
useful lemma.

The following lemma, whose proof is straightforward, ensures that simulta-
neous substitutions and one-step substitutions coincide when substituting only
one name.

Lemma 14. For all P ∈ Π, for all names a and b it holds that P{a/b} =
P[a/b].

The proof is divided into two cases, given P and Q ∈ Π:

1. Soundness: if P ↔o Q then P ↔1sO Q.
2. Completeness: if P ↔1sO Q then P ↔o Q.

Soundness: It suffices to show that the relation

R = {(P,Q) | P ↔o Q}
is a one-step open bisimulation.
To this end, notice first of all thatR is symmetric. Assume now that P ↔o Q.

Consider first Clause 1 of Definition 21 and assume P
α→P ′. Since↔o ranges over

all the simulation substitutions, it ranges also over the simultaneous substitution
ι which is the identity over all the names, i.e., such that Pι = P for all P ∈ Π.
We have thus that Pι

α→P ′. Since P ↔o Q, we have that there exists a process
Q′ such that Qι

α→Q′, which simply means Q
α→Q′, and P ′↔o Q′. We now have

to prove that P ′RQ′. This follows from the fact that P ′↔o Q′.
Consider now Clause 2 of Definition 21, which is about one-step substitutions.

It is easy to see that since↔o ranges over all the simultaneous substitutions, it
also ranges over all the simultaneous substitutions that replace only one name
with another. By Lemma 14, these substitutions coincide to their corresponding
one-step substitutions.
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Completeness: It suffices to show that the relation
assume Pσ

α→P ′. L

R = {(P,Q) | P ↔1sO Q}

is an open bisimulation.
To this end, notice first of all that R is symmetric. Assume now that P ↔1sO

Q. Let us pick a simultaneous substitutions σ and let us consider its encoding as
a series of -one-step substitutions σ∗ = JσK(P ||Q) (We use P ||Q as parameter in
order to make sure that the encoding will pick names that are fresh in both P
and Q). Note that if a name is fresh in both P and Q, it is fresh in P and The-
orem 16 applies. The same holds for Q. Let σ∗ be [a1/a2][a3/a4] · [an−1, /an] · ε.
The first one-step substitution [a1/a2] is considered by ↔1sO, and we have
that P [a1/a2] ↔1sO Q[a1/a2]. Now, since P [a1/a2] ↔1sO Q[a1/a2], we have
that, again by Clause 2 of Definition 21, the substitution [a3, a4] is considered
by ↔1sO from the terms P [a1/a2] and Q[a1/a2], and P [a1/a2][a3/a4] ↔1sO

Q[a1/a2][a3, a4]. By iterating the application of Clause 2 of Definition 21, we
can apply to P and Q the complete sequence of one-step substitutions σ∗, end-
ing up with Pσ∗↔1sO Qσ∗. Now, thanks to the Clause 1 of Definition 21, since
Pσ∗ ↔1sO Qσ∗, if Pσ∗

α→P ′ then Qσ∗
α→Q′ and P ′ ↔1sO Q′. By Theorem 16,

Pσ∗ = Pσ, so also Pσ is such that Pσ
α→P ′. For the same reasons, we have that

also Qσ is such that Qσ
α→Q′. Now, since P ′↔1sO Q′ we have that P ′RQ′.

This concludes the proof of Theorem 15. The statement of Theorem 7 easily
follows from Theorem 14 and Theorem 15.

K Simulation of Substitutions by One-Step Substitutions:
Proof of Theorem 16

The proof of Theorem 16 relies on two lemmas, whose proofs are omitted.

Lemma 15. For all P ∈ Π, for each simultaneous substitution σ and names a
and b, if σ does not map a, b is fresh in P and b does not appear in σ, then it
holds that (P{b/a})σ = P{b/a} · σ.

The reader must notice that differently from what happens in (P{b/a})σ, in
the term P{b/a} ·σ the substitution {b/a} is performed simultaneously with the
others of σ. The proof of Lemma 15 is straightforward and omitted.

The following lemma says, instead, that in order to change an atom a into
b in a term while performing other substitutions, we can first change the atom
a into a fresh new atom af and apply simultaneously the further substitutions,
and after that, replace the atom af with b. We can do this as long as the further
substitutions do not change af or introduce other occurrences of af .

Lemma 16. For all P ∈ Π, for each simultaneous substitution σ and names a,
b and af , if σ does not map a and af is fresh in P and af does not appear in
σ, then it holds that P{b/a} · σ = (P ({af/a} · σ)){b/af}.
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Let P be a process of the π-calculus and σ be a simultaneous substitution.
The proof proceeds by induction on the ”length” of σ, i.e., the cardinality of the
set of atoms over which σ does not act as the identity. Note that by Definition
17 this set is finite. For what follows, we invite the reader to pay attention to
the fact that the two expressions (P{af/a})σ and P ({af/a} · σ) mean different
things. The former denotes the substitution σ applied to the term P{af/a},
while the latter denotes the substitution {af/a} · σ applied to the term P .

– Length 0, i.e., σ = ε: It is easy to see that Pε = P JεKP = ε.

– Length n > 0, i.e., σ = {b/a} ·σ′: Then, JσKP = [af/a]Jσ′KP [af/a][b/af ], with
af fresh in P . Now, let us consider the term P{af/a}. By inductive hypoth-
esis, which apply to σ′, (P{af/a})Jσ′KP{af/a} = (P{af/a})σ′. By Lemma
14, we know that P{af/a} = P [af/a], so we have (P [af/a])Jσ′KP [af/a] =
(P{af/a})σ′. Again, by Lemma 14, we can add one single additional substi-
tution without affecting the equation, so we have ((P [af/a])Jσ′KP [af/a])[b/af ] =
((P{af/a})σ′){b/af}. Since σ is a mapping, clearly σ′ does not map a. We
know also that af does not appear in σ′ and that af is fresh in P . We can
thus apply Lemma 15 and have that (P{af/a})σ′ = P{af/a} ·σ′. The equa-
tion thus rewrites as P [af/a]Jσ′KP [af/a][b/af ] = (P{af/a}·σ′){b/af}. Again,
since σ′ does not map a, af does not appear in σ′ and af is fresh in P , we
can apply Lemma 16 and have that (P{af/a} · σ′){b/af} = P{b/a} · σ′. We
can thus conclude that P [af/a]Jσ′KP [af/a][b/af ] = P{b/a} · σ′.

L Nominal bisimilarity equates too much in λ-calculus:
Proof of Theorem 9

Before embarking on the proof of Theorem 9, let us first state some lemmas.

Lemma 17 (Free atoms of a term after a substitution). Let T be an
NTSS and let M be a term over the signature of T . For all atoms b, it holds
that:

– If fa(M) = Φ and a 6∈ Φ, then fa(M [b/a]) = Φ (if M [b/a] is defined).

– If fa(M) = Φ ∪ {a} and a 6∈ Φ, then fa(M [b/a]) = Φ ∪ {b} (if M [b/a] is
defined).

Lemma 18 (Substituting a free atom with a binding-closed term). Con-
sider the NTSS of our lazy λ-calculus defined in Section 5.1. Let M ∈ C(Σλ) and
let fa(M) = {a}, for some atom a. For all terms M ′ ∈ C(Σλ) and N ∈ C(Σλ)0,

it holds that if M
a
T7→N−→ M ′ then M ′ ∈ C(Σλ)0.

Lemmas 17 and 18 can both be proved by an induction on the structure of
M . The proofs are simple and omitted. Note, however, that these proofs rely on
the straightforward fact that a 6∈ fa([a]M) for every atom a and term M .
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Lemma 19 (α-conversions preserve the set of free atoms). Let T be an
NTSS whose set of rules contains the rules for α-conversion transitions as defined
in Section 4.2. Let M be a term over the signature of T and let fa(M) = Φ. For
all terms N , it holds that if M ≈α N then fa(N) = Φ.

Intuitively, it is easy to see from the rules of Section 4.2 that an α-conversion
transition does not introduce or delete free atoms in a term. Lemma 19 can
be proved by an induction on the length of the proofs of provable α-conversion
transitions. However, such a proof makes use of a technical detail for the case
of terms of form [a].M . We shall discuss only this case in detail. There are two
possible α-conversion transitions from the term [a].M . Namely (1) [a]M ≈α

[b]M ′ by rule (abs1α), with b#M and M
a
A7→b−→ M ′, and (2) [a]M ≈α [a]M ′ by

rule (abs2α), with M ≈α M ′.
Let us consider (1). Let fa([a].M) = Φ. By definition of the set fa, a 6∈ Φ.

We also have that fa(M) = Φ or fa(M) = Φ ∪ {a}. Now, By Lemma 2, which
states the correctness of substitution transitions, we know that M ′ = M [b/a]. By
Lemma 17 we can conclude that fa(M [b/a]) = Φ and b 6∈ Φ, or fa(M [b/a]) =
Φ ∪ {b}. Either way, when we abstract on the atom b from M [b/a], we have
fa([b].M [b/a]) = Φ.

Let us consider (2). Let fa([a].M) = Φ, it holds again that a 6∈ Φ and
that fa(M) = Φ, or fa(M) = Φ ∪ {a}. Now, since the proof length for prov-
ing the transition M ≈α M ′ is strictly less than the proof length for proving
[a]M ≈α [a]M ′, by the inductive hypothesis we can conclude that fa(M ′) = Φ
or fa(M ′) = Φ∪ {a}. Either way, when we abstract on the atom a from M ′, we
have fa([a].M ′) = Φ.

As a straightforward consequence of Lemma 19, α-conversion transitions pre-
serve binding-closedness of terms, as stated below.

Lemma 20 (α-conversions preserve binding-closedness of terms). Let
T be an NTSS with signature Σ and let the set of rules of Σ contain the rules
for α-conversion transitions as defined in Section 4.2. Let M ∈ C(Σ)0. For all
terms N , it holds that if M ≈α N then N ∈ C(Σ)0.

For any two α-equivalent terms of our formulation of the lazy λ-calculus,
it holds that either they both have a normal form or they both do not have a
normal form, as stated below.

Lemma 21 (α-conversions preserve the normal form). Consider the NTSS
of our lazy λ-calculus defined in Section 5.1. Let M be a term over Σλ and let
M have a normal form. For all terms N , it holds that if M ≈α N then N has a
normal form.

Lemma 21 follows easily from the fact that the reduction → is up to α-
equivalence and the transition ≈α is ’symmetric’, as shown in the proof of The-
orem 3 in Section ??. These two facts imply that if the transition M→M ′ is
provable, then also the transition N→M ′ is provable, by α-converting first N
back to M .
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Lemma 22 (Substitutions are always possible on λ-terms). Consider
the NTSS of our lazy λ-calculus defined in Section 5.1. Let M ∈ C(Σλ). For all

atoms a and terms N , it holds that M
a
T7→N−→ M ′ for some term M ′.

Lemma 22 can be proved by an induction on the length of the proofs of
provable substitution transitions. The only delicate point is when performing a

substitution
a
T7→N−→ in a term M and M contains an abstraction [b].M1 with b not

fresh in N . However, as argued in Section 5.3, since we set the term-for-atom
substitutions of our lazy λ-calculus to be up to α-equivalence, a substitution
transition is possible also in this case.

By way of example, consider the provable transition

(λ([a].λ([b].(b a)))
c
T7→(b b)−→ (λ([a].λ([d].(d a))),

where d is fresh in (b a). In this case an α-conversion takes place before the
application of rule (abs1Ts).

This point is not shown formally here. However, it follows exactly the same
reasoning employed in case 3 of the enumeration that contains the proofs of a
few cases for Lemma 23 below.

Lemma 23 (Substitutions are ’ineffective’ on binding-closed terms).
Consider the NTSS of our lazy λ-calculus defined in Section 5.1. Let M ∈
C(Σλ)0 and let b be an atom fresh in M . For all terms N and M ′, it holds

that if M
b
T7→N−→ M ′ then M ≈α M ′.

Intuitively, it is easy to see that the substitution transitions defined by the
rules of Section 4.1 can only substitute free atoms in a term. Since a binding-
closed term contains no free atom, a substitution ends up in the same term up
to α-equivalence.

Lemma 23 can be proved by an induction on the length of the proofs of
provable substitution transitions. However, the cases involving an abstraction
[a].M are quite delicate and we wish to discuss them in detail.

1. Let us consider the term [a]M and the substitution transition
b
T7→N−→ where

b 6= a and a is fresh in N . By the proviso of the lemma, we have also that b
is fresh in [a]M . In this case we can apply only the rule (abs1Ts), as (abs2Ts)
requires that a = b. The rule (abs1Ts) is instanciated as follows.

M
b
T7→N−→ M ′ a#N a 6= b

[a]M
b
T7→N−→ [a]M ′

Notice that the premises a#N and a 6= b are satisfied. Moreover, since b is
fresh in [a]M , then b 6∈ fa(M). Indeed, the term M may have only the atom
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a as free, if any. Since b is fresh in M , and since the proof length for proving

the transition M
b
T7→N−→ M ′ is strictly less than the proof length for proving

[a]M
b
T7→N−→ [a]M ′, the inductive hypothesis the inductive hypothesis applies

and M ≈α M ′. Therefore, the transition proved above is [a]M
b
T7→N−→ [a]M ′,

with [a]M ≈α [a]M ′ (by rule (abs2α)).

2. Let us consider the term [a].M and the substitution transition
a
T7→N−→ (it is

irrelevant whether a is fresh in N or not). In this case we cannot apply the
rule (abs1Ts) above, as the premise a 6= b is not satisfied. However, we can

apply the rule (abs2Ts) and prove the transition [a]M
a
T7→N−→ [a]M , for which

it clearly holds that [a]M ≈α [a]M .

3. The case discussued in this item is related to the case pointed out for Lemma

22 above. Let us consider the term [a].M and the substitution transition
b
T7→N−→

where b 6= a and a is not fresh in N . By the proviso of the lemma, we have
also that b is fresh in [a]M . In this case we cannot apply the rule (abs1Ts), as
it requires that a#N . Also, we cannot apply the rule (abs2Ts), as it requires
that a = b. However, since the term-for-atom substitution transitions are set
to be up to α-equivalence, we can pick an atom c that is fresh in N and

instanciate the rule (b
T7→ N · upToα) as follows.

[a]M ≈α [c]M ′ [c]M ′
b
T7→N−→ [d]M ′′

[a]M
b
T7→N−→ [d]M ′′

.

Now, by Lemma 19, since [a]M ≈α [c]M ′ we have that fa([a]M) = fa([c]M ′).
This means that since b is fresh in [a]M then b is fresh also in [c]M ′. Given

this fact, and also since the proof length for proving the transition [c]M ′
b
T7→N−→

[d]M ′′ is strictly less than the proof length for proving [a]M
b
T7→N−→ [d]M ′′,

the inductive hypothesis applies and we have that [c]M ′ ≈α [d]M ′′. Since
[a]M ≈α [c]M ′ is provable and also [c]M ′ ≈α [d]M ′′ is provable, we can
use the rule (α · upToα), (basically closing by transitivity), and prove the
transition [a]M ≈α [d]M ′′ as required.

The reader may benefit also from an informal intuition on the dynamics at
play in the cases above. The enumeration below contains useful examples and will
serve this purpose. Note that, each number of the enumeration for the examples
below corresponds to the number of the enumeration of the cases proved above.
In what follows, atoms with distinct names are considered different atoms.

1. (λ([a].λ([b].(b a)))
c
T7→(d d)−→ (λ([a].λ([b].(b a))), employing the rule (λTs) with

(abs1Ts).
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2. (λ([a].λ([b].(b a)))
a
T7→(d d)−→ (λ([a].λ([b].(b a))), employing the rule (λTs) with

(abs2Ts). Employing the same rules we can prove also (λ([a].λ([b].(b a)))
a
T7→(b b)−→

(λ([a].λ([b].(b a))).

3. (λ([a].λ([b].(b a)))
c
T7→(b b)−→ (λ([a].λ([d].(d a))), where d is fresh in (b a). This

case is related to Lemma 22.

Lemma 24 (Reductions preserve binding-closedness and the normal
form). Consider the NTSS of our lazy λ-calculus defined in Section 5.1. Let
M ∈ C(Σλ)0 have a normal form. For all terms M ′, it holds that if M→M ′

then M ′ ∈ C(Σλ)0 and M ′ has a normal form.

Lemma 24 can be proved by an induction on the length of the proofs of prov-
able transitions → . We single out only the case when the rule (app) is applied.
Let us assume that (M N)→M ′′′ is provable by the rule (app) instanciated as
follows.

M→λ([a]M ′) M ′
a
T7→N−→ M ′′ M ′′→M ′′′

(M N)→M ′′′
(app)

Now, since (M N) ∈ C(Σλ)0, we have that M ∈ C(Σλ)0 and N ∈ C(Σλ)0.
As the transition M→λ([a]M ′) is provable, M has a normal form. Since also
M ∈ C(Σλ)0 and the fact that the proof length for proving the transition
M→λ([a]M ′) is strictly less than the proof length for proving (M N)→M ′′′, the
inductive hypothesis applies and we have that λ([a]M ′) ∈ C(Σλ)0. This means
that fa(M ′) = ∅ or fa(M ′) = {a}. If fa(M ′) = ∅, then M ′ ∈ C(Σλ)0 and by

Lemmas 23 and 19 we can conclude that after the transition M ′
a
T7→N−→ M ′′ we

have that M ′′ ∈ C(Σλ)0 (by applying also Lemma 20 to M ′′). If fa(M ′) = {a},
since N ∈ C(Σλ)0, we can apply Lemma 18 and have that M ′′ ∈ C(Σλ)0. Ei-
ther way, we have that M ′′ ∈ C(Σλ)0. Now, since the transition M ′′→M ′′′ is
provable, M ′′ has a normal form. Since also M ′′ ∈ C(Σλ)0 and the fact that the
proof length for proving the transition M ′′→M ′′′ is strictly less than the proof
length for proving (M N)→M ′′′, the inductive hypothesis applies and we have
that M ′′′ ∈ C(Σλ)0 and has a normal form.

The rest of the proof proceeds following standard lines. Note, however, that
the proof for transitions M→M ′ up to α-conversion, i.e. an α-conversion takes
place first, makes use of Lemmas 20 and 21, which state that α-conversions
preserve binding-closedness and ’having a normal form’, respectively.

We are now ready to prove Theorem 9. To this end, it is sufficient to show
that the relation

R = {(M,N) |M,N ∈ C(Σλ)0 and M,N have normal form}

is a nominal bisimulation.
Notice first of all that R is symmetric. Assume now that M R N . There

are three types of transitions that we need to consider within the bisimulation
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game of Definition 16. Namely, (1) substitutions transitions, (2) α-conversion
transitions and (3) transitions performed by the reduction step → .

Let us consider first the case (1). Let us pick an atom a and a term P and

assume that M
a
T7→P−→ M ′, for some term M ′. Since M ∈ C(Σλ)0, by Lemma 23

we know that M ≈α M ′. Since M ∈ C(Σλ)0 and M has a normal form, by
Lemmas 20 and 21 we can conclude that M ′ ∈ C(Σλ)0 and also that M ′ has a
normal form. Now, since N ∈ C(Σλ)0, by Lemma 22 substitutions are always

possible and we have that N
a
T7→P−→ N ′ for some term N ′. By Lemma 23, we also

know that N ≈α N ′. Again, since N ∈ C(Σλ)0 and N has a normal form, by
Lemmas 20 and 21 we can conclude that N ′ ∈ C(Σλ)0 and also that N ′ has a
normal form. We therefore have that M ′ R N ′.

Let us consider now the case (2) and assume that M ≈α M ′, for some term
M ′. Using Lemmas 20 and 21, we know that M ′ ∈ C(Σλ)0 and that M ′ has
a normal form. Now, we can use the rule (idα) in order to prove the transition
N ≈α N . Since N ∈ C(Σλ)0 and N has a normal form, we have therefore that
M ′ R N .

Let us consider now the case (3) and assume that M→M ′, for some term
M ′. By Lemma 24 we know that M ′ ∈ C(Σλ)0 and that M ′ has a normal form.
Now, since N has a normal form, we have that we can prove a transition N→N ′,
for some term N ′. Moreover, by Lemma 24 we have that N ′ ∈ C(Σλ)0 and also
that N ′ has a normal form. We have therefore that M ′ R N ′. This concludes
the proof.

M Applicative and nominal bisimilarity coincide in the
alternative formulation of the λ-calculus.

In order to establish a correspondence between applicative bisimilarity in the
original lazy λ-calculus and nominal bisimilarity in the nominal formulation of
it presented in Section 7.1, we need to establish the correctness of substitutions
and α-conversion transitions as well as of transitions → .

Notice that, since the formulation of the lazy λ-calculus employs the signature
Σλ, the correctness of substitutions and α-conversion transitions has already
been established by Lemma 5 and Lemma 4, respectively.

The following lemma states that a transition λ([a].M)
P→M ′ corresponds to

feeding the abstraction λ([a].M) with the term P .

Lemma 25. For all λ-terms M , binding-closed λ-terms P and atoms a, it holds
that

– Jλa.MKλ
JP Kλ→ JM [P/a]Kλ.

– if Jλa.MKλ
JP Kλ→ N then N = JM [P/a]Kλ.

Lemma 25 says first that for any binding-closed λ-terms P , a transition
JP Kλ→

always exists from abstractions. It also says that this transition is deterministic,
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a result that comes directly from the determinism of substitution transitions
stated in Lemma 2. These are considerations that will be employed in the proof
of the coincidence between applicative and nominal bisimilarity. Another lemma
that is employed in the proof of the correctness of transitions → states that the
target of this sort of transitions is always an abstraction.

Lemma 26 (Transitions → always produce an abstraction). For all
terms M ∈ C(Σλ)0, it holds that if M→N then N = λ([a].M ′), for some
atom a and term M ′ ∈ C(Σλ).

The operational correspondence that we aim to prove relies also on the fol-
lowing straightforward observations: 1. The encoding J·Kλ is surjective, i.e. every
term in our formulation of the lazy λ-calculus is the the encoding of a λ-term.
2. Closed λ-terms encode into binding-closed terms and viceversa. For ease of
reference, we state these lemmas below.

Lemma 27 (Surjectivity of J·Kλ). For all terms M ′ ∈ C(Σλ) of sort L, it
holds that JMKλ = M ′, for some M ∈ Λ.

Lemma 28 (Absence of free atoms/variables is preserved by J·Kλ).

– For all M ∈ Λ0 it holds that JMKλ ∈ C(Σλ)0.

– For all M ′ ∈ C(Σλ)0 it holds that JMKλ = M ′ for some M ∈ Λ0.

We now state the operational correspondence between our new formulation
of the lazy λ-calculus and its original formulation.

Theorem 17 (Operational correspondence for the new formulation).

– ⇒: For all M ∈ Λ0 and N ∈ Λ, it holds that if M→N then JMKλ→ JNKλ.

– ⇐: For all M ∈ Λ0 and N ∈ C(Σλ) it holds that if JMKλ→N then M→N ′

and JN ′Kλ = N , for some term N ′ ∈ Λ0.

The reader should notice that the operational correspondence just stated
is weaker than the one established in Theorem 4 in the context of our first
formulation of the lazy λ-calculus. Indeed, the correspondence stated in Theorem
17 only applies to closed λ-terms. The reason for such a weaker theorem is
that the new formulation perform the parameter passing only for binding-closed
terms. The reason of this choice is motivated in Section 5.1. The proof of the
coincidence between applicative and nominal bisimilarity makes use of this fact
and we shall state it explicitly below. It is also to notice that the case⇒ implies
that

Lemma 29 (The parameter-passing involves only binding-closed terms).

For all terms M,N and P ∈ C(Σλ), it holds that if M
P→N then P ∈ C(Σλ)0.
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The proofs of Lemma 25-29 are straightforward and therefore omitted.
The proof of Theorem 17 follows the same lines of the proof of Theorem

4 and we omit the details. The proof proceeds by induction on the length of
a proof of the relevant transition. The only non-trivial case in the proof of
the ”⇐” statement in the theorem is for rule (app1AP) and in that case the
proof uses first Lemma 26 to relate the premise x0→ y0 of rule (app1AP) to the
premise x0→λa.y0 of rule (appO). Then the proof proceeds from this point

by using Lemma 25 for matching the premises y0
x1→ y1 and y1→ y2 of rule

(app1AP) against the premise y0[x1/a]→ y1 of rule (appO). In particular, y1
of rule (app1AP) corresponds to y0[x1/a] in (appO) and y2 of rule (app1AP)
corresponds to y1 of rule (appO). The proof then concludes with standard rea-
soning.

The proof of the coincidence between applicative and nominal bisimilarity
also relies, among other results, on Lemma 23, which says that substitutions
are ’ineffective’ on binding-closed terms, and on two well-known facts from the
theory of the lazy λ-calculus that say that applicative bisimilarity and term
closedness are preserved under reduction. We state these two lemmas below for
the sake of completeness.

Lemma 30 (Applicative bisimilarity is preserved under reduction). For
all M,N ∈ Λ0, it holds that if M→N then M ' N .

Lemma 31 (Closedness of λ-terms is preserved under reduction). For
all M ∈ Λ0 and N ∈ Λ, it holds that if M→N then N ∈ Λ0.

We now have everything we need in order to proceed with the proof. The
proof is divided into two cases, given M and N ∈ Λ0:

1. Soundness: if M ' N implies JMKλ ↔–– JNKλ.
2. Completeness: if JMKλ ↔–– JNKλ then M ' N .

Soundness: It suffices to show that the relation

R = {(JMKλ, JNKλ) |M ' N}

is a nominal bisimulation.
To this end, notice first of all that R is symmetric since so is '. Assume now

that M ' N . We now have to ensure that if JMKλ α→M ′ for some M ′ and label

α then also a transition JNKλ α→N ′ is provable for some N ′ such that M ′RN ′.
There are a few types of transitions for which we should ensure that this

matching holds, 1) substitutions transitions, 2) α-conversion transitions, 3) re-

duction → and 4) the new transitions of the form
P→ . Case 1) can be proved

trivially thanks to the fact that substitutions are ineffective in our context, i.e.
thanks to Lemma 23. Case 2) can be proved trivially thanks to the correctness
of α-conversion transitions and the fact that α-equivalence is included in the
nominal bisimilarity. Case 3) is also trivial thanks to the operational correspon-
dence stated in Theorem 17 in the first place and then to fact that applicative
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bisimilarity is preserved under reduction, i.e. thanks to Lemma 30. The only

relevant case is for transitions of the form
P→ , which we shall consider in detail

in what follows. Let us pick P ∈ Λ0 and assume JMKλ
JP Kλ→ M ′′, for some M ′′.

Now we have to split the four cases, whether 1) M and N are both abstractions,
2) M is an abstraction and N is an application, 3) M is an application and N
is an abstraction and 4) M and N are both applications.

Let us start by considering cases 1) and 2) together. Let M be an abstraction
λa.M ′. Now, since rule (abs2AP) is the only rule for proving transitions of the

form
P→ from abstractions, we have that the transition Jλa.M ′Kλ

JP Kλ→ M ′′ is
provable by rule (abs2AP), for some M ′′. We thus have that rule (abs2AP) is
instantiated in the following way.

JM ′Kλ
a
T7→JP Kλ−→ M ′′

Jλa.M ′Kλ
JP Kλ→ M ′′

By Lemma 5, which states the correctness of substitutions transitions, we now
know that M ′′ = JM ′[P/a]Kλ.

Now, let us consider case 1) and let N be an abstraction λb.N ′. We can
instantiate the same rule (abs2AP) in the following way.

JN ′Kλ
b
T7→JP Kλ−→ N ′′

Jλb.N ′Kλ
JP Kλ→ N ′′

Again, by Lemma 5, we know that N ′′ = JN ′[P/b]Kλ. Since λa.M ′ ' λb.N ′, we
have that M ′[P/a] ' N ′[P/b] by definition of applicative bisimilarity, see Defini-

tion 19. We thus have that Jλa.M ′Kλ
JP Kλ→ JM ′[P/a]Kλ and Jλb.N ′Kλ

JP Kλ→ JN ′[P/b]Kλ
and, by definition of R, it holds that JM ′[P/a]KλRJN ′[P/b]Kλ.

Consider now case 2) and let N be an application (N1 N2). We can instantiate
rule (app2AP) as follows.

J(N1 N2)Kλ→N ′ N ′
JP Kλ→ N ′′

J(N1 N2)Kλ
JP Kλ→ N ′′

We know that the transition J(N1 N2)Kλ→N ′ is provable because λa.M ′

has a normal form and the two terms λa.M ′ and (N1 N2) are applicative bisim-
ilar. This means that (N1 N2) cannot diverge and it, too, has a normal form
M ′′. By Theorem 17 which states the operational correctness of transitions → ,
we therefore have J(N1 N2)Kλ→N ′. By Lemma 26, which states that a reduc-
tion always produce an abstraction, we know that M ′′ is an abstraction. By
Lemma 27 (surjectivity of J·Kλ) we know that N ′ is an abstraction and by a
simple inspection over the encoding we can prove that N ′ is the encoding of
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an abstraction in the λ-calculus. We have therefore N ′ = Jλb.N ′0Kλ for some
atom b and N ′0 ∈ Λ. Now, by Theorem 30, applicative bisimilarity is preserved
under reduction and we thus have that (N1 N2) ' λb.N ′0 and by transitiv-
ity of ' also that λb.N ′0 ' λa.M ′. Lemma 25 guarantees that the the transi-

tion Jλb.N ′0Kλ
JP Kλ→ JN ′0[P/b]Kλ is provable, so the second premise of the rule is

satisfied and instantiated accordingly. In particular, N ′′ = JN ′0[P/b]Kλ. Now,
since λa.M ′ ' λb.N ′0 we have that M ′[P/a] ' N ′0[P/b]. We finally have that

J(N1 N2)Kλ
JP Kλ→ JN ′0[P/b]Kλ and JM ′[P/a]KλRJN ′0[P/b]Kλ.

Case 3) is symmetric to case 2) and not shown. We omit the details also for
case 4). It is suffice to notice that from two applications M and N we obtain
two abstractions after the first reduction step. From this point we find ourselves
in case 1) and we can proceed as above.

Completeness: It suffices to show that the relation

R = {(M,N) | JMKλ ↔–– JNKλ}

is an applicative bisimulation.
To this end, notice first of all that R is symmetric, since so is↔––. Assume now

that JMKλ ↔–– JNKλ. We have to prove first that if M→M ′ then also N→N ′ for
some N ′ such that JM ′Kλ ↔–– JN ′Kλ. By Theorem 17 which states the operational
correctness of transitions → , we have that M→M ′ only when a transition
JMKλ→M ′′ is provable for some M ′ such that JM ′′Kλ = M ′. Assume this is the
case. Since JMKλ ↔–– JNKλ, we have that also a transition JNKλ→N ′′ is provable,
for some N ′′ such that M ′′ ↔–– N ′′. By Lemma 26, which states that a reduction
always produce an abstraction, we have that M ′′ must be an abstraction. By
Lemma 27 we know that M ′′ is the encoding of some λ-term. Since M ′′ is an
abstraction, by a simple inspection over the encoding we can prove thatM ′′ is the
encoding of an abstraction in the λ-calculus. We have therefore M ′′ = Jλa.M ′0Kλ,
for some atom a and term M ′0 ∈ Λ, and by the same reason, N ′′ = Jλb.N ′0Kλ
for some atom b and term N ′0 ∈ Λ. Now, since Jλa.M ′0Kλ ↔–– Jλb.N ′0Kλ, they

agree also on transitions
P ′

→ for all terms binding-closed terms P ′. We know
by Lemma 29 that in this formulation of the lazy λ-calculus that P ′ can be
only a binding-closed term, i.e. P ′ ∈ C(Σλ)0. By Lemma 28, which states that
closedness is preserved by the encoding, we also have that every P ′ ∈ C(Σλ)0 is
the encoding of a λ-term P ∈ Λ0. We therefore have that the terms Jλa.M ′0Kλ

and Jλb.N ′0Kλ agree on transitions of the form
JP Kλ→ for all λ-terms P ∈ Λ0. Now,

by Lemma 25, for all λ-terms P ∈ Λ0 we have that Jλa.M ′0Kλ
JP Kλ→ JM ′0[P/a]Kλ

and Jλb.N ′0Kλ
JP Kλ→ JN ′0[P/b]Kλ. Since Jλa.M ′0Kλ ↔–– Jλb.N ′0Kλ, also the targets of

these transitions are bisimilar, and we have that JM ′0[P/a]Kλ ↔–– JN ′0[P/b]Kλ. We
can therefore conclude that M ′0[P/a]RN ′0[P/b], for all P ∈ Λ0.

Lemma 25 guarantees that there are no other
JP Kλ→ transitions from Jλa.M ′0Kλ

and Jλb.N ′0Kλ that we need to consider. The proof is therefore complete.
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